• Title/Summary/Keyword: Geometric Nonlinear

Search Result 668, Processing Time 0.027 seconds

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

GEOMETRIC ERGODICITY AND TRANSIENCE FOR NONLINEAR AUTOREGRESSIVE MONELS

  • Lee, Oe-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.409-417
    • /
    • 1995
  • We consider the $R^k$-valued $(k \geq 1)$ process ${X_n}$ generated by $X_n + 1 = f(X_n)+e_{n+1}$, where $f(x) = (h(x),x^{(1)},x^{(1)},\cdots,x{(k-1)})'$. We assume that h is a real-valued measuable function on $R^k$ and that $e_n = (e'_n,0,\cdot,0)'$ where ${e'_n}$ are independent and identically distributed random variables. We obtained a practical criteria guaranteeing a given process to be geometrically ergodic. Sufficient condition for transience is also given.

  • PDF

Geometric Nonlinear Analysis Formulation for Spatial Frames using Stability Functions (Stability Function을 이용한 공간 뼈대구조물의 기하학적 비선형해석 포뮬레이션)

  • 윤영묵;박준우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.201-207
    • /
    • 1998
  • In this study, a geometric nonlinear analysis formulation for spatial frames is developed using the 3D stability functions. For the formulation, the relationships of local and global coordinate systems in force, deformation, and the initial and current configurations of a frame are derived. The force-deformation relationship in global coordinate system is derived as well. The developed formulation is verified in each derivation by reducing the derived equations into 2D equations. The gradual plastification of connections and critical sections can be implemented effectively to this formulation for the complete second order inelastic advanced analysis of spatial frames.

  • PDF

Observer for Nonlinear Systems Using Approximate Observer Form (근사 관측기 형태를 이용한 비선형 시스템의 관측기)

  • 이성렬;신현석;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.207-207
    • /
    • 2000
  • This paper presents an observer for nonlinear systems using approximate observer form. It is shown that if a nonlinear system is approximately error linearizable, then there exists a local nonlinear observer whose estimation error converges exponentially to zero. Since the proposed method relaxes strong geometric conditions of previous works, it improves the existing results for a nonlinear observer design. Finally, some examples are given to show the effectiveness of this scheme.

  • PDF

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Nonlinear Modelling for the Vibration Analysis of a Rotating Ring with the In-Plane/Out-of-Plane Deformations (면내/면외 변형이 있는 회전 링의 진동해석을 위한 비선형 모델링)

  • Kim, Won-Suk;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • Nonlinear models for a thin ring rotating at a constant speed are developed. The geometric nonlinearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton’s principle, the coupled nonlinear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from the nonlinear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the behavior of the rotating ring.

Ergodicity of Nonlinear Autoregression with Nonlinear ARCH Innovations

  • Hwang, S.Y.;Basawa, I.V.
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.565-572
    • /
    • 2001
  • This article explores the problem of ergodicity for the nonlinear autoregressive processes with ARCH structure in a very general setting. A sufficient condition for the geometric ergodicity of the model is developed along the lines of Feigin and Tweedie(1985), thereby extending classical results for specific nonlinear time series. The condition suggested is in turn applied to some specific nonlinear time series illustrating that our results extend those in the literature.

  • PDF

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.

Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm (로봇팔의 최적 기하학적 경로 및 시간최소화 운동)

  • Park, Jong-Keun;Han, Sung-Hyun;Kim, Tae-Han;Lee, Sang-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF