• Title/Summary/Keyword: Geometric Interpretation

Search Result 82, Processing Time 0.029 seconds

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

An Effective Implementation of Inverse Kinematics Module through Geometric Interpretation (기하학 해석을 통한 역운동학 모듈의 효과적인 구현)

  • Kang, Jong-Ho;Kim, Kyung-Sik;Yoo, Kwan-Hee
    • Journal of Korea Game Society
    • /
    • v.4 no.4
    • /
    • pp.19-24
    • /
    • 2004
  • In this paper, we have proposed a new geometric solution of inverse kinematics of high instinct, while traditional solutions of inverse kinematics requires high level of mathematical knowledge. It was possible to use the inverse kinematics without mathematical knowledge because 3D vectors of directions of folded bones could be calculated by our method in the inverse kinematic model of two bones. The proposed method can be utilized easily by graphic designers who have little knowledge of mathematics of inverse kinematics

  • PDF

A Study on Possibility of Teaching Complex Numbers from Geometric Aspect (기하학적 측면에서 복소수의 지도가능성 고찰)

  • Lee, Dong-Hwan
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • In the 7th-curriculum, only basic arithmetics of complex numbers have been taught. They are taught formally like literal manipulations. This paper analyzes mathematically essential relations between algebra of complex numbers and plane geometry. Historical analysis is also performed to find effective methods of teaching complex numbers in school mathematics. As a result, we can integrates this analysis with school mathematics by help of Viete's operations on right triangles. We conclude that teaching geometric interpretation of complex numbers is possible in school mathematics.

  • PDF

A Study of Singular Value Decomposition in Data Reduction techniques

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.63-70
    • /
    • 1998
  • The singular value decomposition is a tool which is used to find a linear structure of reduced dimension and to give interpretation of the lower dimensional structure about multivariate data. In this paper the singular value decomposition is reviewed from both algebraic and geometric point of view and, is illustrated the way which the tool is used in the multivariate techniques finding a simpler geometric structure for the data.

  • PDF

A New Penalty Parameter Update Rule in the Augmented Lagrange Multiplier Method for Dynamic Response Optimization

  • Kim, Min-Soo;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1122-1130
    • /
    • 2000
  • Based on the value of the Lagrange multiplier and the degree of constraint activeness, a new update rule is proposed for penalty parameters of the ALM method. The theoretical exposition of this suggested update rule is presented by using the algorithmic interpretation and the geometric interpretation of the augmented Lagrangian. This interpretation shows that the penalty parameters can effect the performance of the ALM method. Also, it offers a lower limit on the penalty parameters that makes the augmented Lagrangian to be bounded. This lower limit forms the backbone of the proposed update rule. To investigate the numerical performance of the update rule, it is embedded in our ALM based dynamic response optimizer, and the optimizer is applied to solve six typical dynamic response optimization problems. Our optimization results are compared with those obtained by employing three conventional update rules used in the literature, which shows that the suggested update rule is more efficient and more stable than the conventional ones.

  • PDF

A Score test for Detection of Outliers in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.201-208
    • /
    • 1993
  • Given the specific mean shift outlier model, the score test for multiple outliers in nonlinear regression is discussed as an alternative to the likelihood ratio test. The geometric interpretation of the score statistic is also presented.

  • PDF

Prints Design Which Appeared in Women's Collections of Paris, Milan & New York from 2011S/S to 2013A/W - Focused on Geometric Pattern - (2011 S/S ~ 2013 A/W 까지 파리, 밀란, 뉴욕 여성복 패션 컬렉션에 나타난 문양디자인 - 기하학 문양을 중심으로 -)

  • Kwon, Haesook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.1
    • /
    • pp.53-64
    • /
    • 2014
  • The main objective of this research was to understand the characteristics of printed geometric patterns through the statistical & qualitative analysis of fashion appeared in contemporary female collections 2011 S/S to 2013 A/W. Data collection of 294 was done through review of 'pr$\hat{e}$t-$\grave{a}$-porter Collections' of three major fashion cities; Paris, Milan and NY. Statistical analysis of frequency was conducted. Also qualitative interpretation of natural print design' characteristics were completed. The main findings were as followed; 1,636 of the total 15,852 designs were printed patterns in 12 Collections and the occurrence rate of printed geometric patterns in three collections were 8.6% in Milan, 9.2% in Paris and 12.9% in N.Y. Most geometric patterns were the types of compact or medium density in a front patterns with a variety of sizes and mainly applied to the one piece dress or two piece clothing item combination styles. Formative Characteristics of printed geometric patterns were classified into four types. First, a variety of thicknesses and shapes, such as a line or a rectangle shape to take advantage of the types of the typical geometric pattern. Second types were using the motifs which inspired by geometric shapes such as point, circle star and other special geometric shapes and arranging them regularly with various sizes and density. The third was repeated particular motifs which based on complex and sophisticated mathematical formulas. Fourth were the specific diagram types of bold and free shapes or dividing the flat and arranging them without rules, or the combination type of various geometric motifs.

  • PDF

A Study on the New Simplicity in Contemporary Interior Space - Focused on the John Pawson's works - (현대 실내공간에서의 New Simplicity에 대한 연구 - 존 파우슨(John Pawson) 작품을 중심으로 -)

  • Koo, Man-Jae;Lee, Jung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.38-46
    • /
    • 2013
  • The change in radically changing era requires various interpretation of interior space and application according to it Minimalism shows simple and pure geometric structure and has been influencing to every aspect encompassing space till present. The features of minimalism in space is geometric structure and composition of simple and repetitive line, restrained simple space, pure and structural simplicity. When minimalism construction is discussed, the vocabulary of simplicity has been followed incidentally and has been discussed as concept of simplicity in new viewpoint through historical flow. The purpose of this study is analyzing basic features of John Pawson's ways of working and trying to define the semantics of the new simplicity concept in modern interior space. The new simplicity in John Pawson shows interactive relationship of eastern and western through basic consideration of fundamental elements such as space, light and materials. The relational simple in intermediation of the new simplicity expressed by amalgamation of eastern and western further from disparate interpretation for simplicity expressed in eastern and western is to review back the basic meaning of simplicity in minimalism. And I hope this study can offer various directions for new interior space accepting theory of the new simplicity and I think that new constructional alternative is required as physical space which can be matched with era of social, environmental chaos caused by this theory of the new simplicity.

An Interpretation of the Geometric Signal in Ultrasonic Testing for the Pin-Finger Type of Turbine Blade Roots (핀-핑거형 터빈 동익 루트의 초음파탐상에서의 기하신호 해석)

  • Choi, M.S.;Jung, H.K.;Joo, Y.S.;Lim, H.T.;Yoon, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.3
    • /
    • pp.172-176
    • /
    • 1994
  • Interpreted is the geometric signal in the angle beam ultrasonic testing for the pin-finger type of turbine blade roots. The geometry of the blade roots is described and the reflection conditions for appearance of the geometric signal are proposed. The general equation for its beam path is derived and verified. As the results, it is found that the geometric signal is the back reflection front the ligament edge, and its position and amplitude can be determined from the dimension of blade root and the beam directivity of transducer.

  • PDF

Geometrical Velocity and Force Analyses on Planar Serial Mechanisms (평면 직렬 메커니즘의 기하학적 속도 및 힘 해석)

  • Lee, Chan;Lee, Jeh Won;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.