• 제목/요약/키워드: Geometric Flow

검색결과 592건 처리시간 0.025초

원심압축기 채널디퓨저 내부의 압력분포에 관한 연구 (A Study on Pressure Distributions in a Centrifugal Compressor Channel Diffuser)

  • 강정식;강신형
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.507-513
    • /
    • 2001
  • Time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates are investigated. Pressure distributions from the impeller exit to the channel diffuser exit are measured for various flow rates from choke to near surge condition, and the effects of operating condition are discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

설계 및 탈설계점에서의 원심압축기 채널디퓨저 내부의 압력분포에 관한 연구 (A Study on the Pressure Distribution in the Centrifugal Compressor Channel Diffuser at Design and Off-Design Conditions)

  • 강정식;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.548-554
    • /
    • 2000
  • The aim of this paper is to understand the time averaged pressure distributions in a high-speed centrifugal compressor channel diffuser at design and off-design flow rates. Pressure distributions from the impeller exit to the channel diffuser exit are measured and discussed far various flow rates from choke to near surge condition, and the effect of operating condition is discussed. The strong non-uniformity in the pressure distribution is obtained over the vaneless space and semi-vaneless space caused by the impeller-diffuser interaction. As the flow rate increases, flow separation near the throat, due to large incidence angle at the vane leading edge, increases aerodynamic blockage and reduces the aerodynamic flow area downstream. Thus the minimum pressure location occurs downstream of the geometric throat, and it is named as the aerodynamic throat. And at choke condition, normal shock occurs downstream of this aerodynamic throat. The variation in the location of the aerodynamic throat is discussed.

  • PDF

경동맥 분지관내 정상유동에 대한 컴퓨터 시뮬레이션과 MRA 관찰 (Computer Simulation and MRA Observation for Steady Flow in the Carotid Arterial Bifurcation)

  • 서상호;조민태;유상신;정태섭
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.73-76
    • /
    • 1996
  • Computer simulation and magnetic resonance angiograms(MRAs) are used to understand for flow patterns in the carotid arterial bifurcation. Steady momentum equation is solved by the finite volume method. A Phantom of the carotid artery made of bioacrylic material is used for MRA observation. Flow Patterns are observed by using MRA for flow in the phantom of an automatic closed-type circulatory system filled with sugar 4 w% solution. For numerical analysis the idealized geometric shape of the carotid artery is constructed to portray the phantom. Results of numerical analysis are compared with those of MRA. The flow patterns of the phantom on MRA are almost identical to those of the computer simulation.

  • PDF

벽면효과를 받는 2차원 쐐기형 몰수체의 공동 유동에 대한 수치해석 (Numerical Analysis of Cavitating Flow around Two-dimensional Wedge-shaped Submerged Bodies under the Wall Effect)

  • 김지혜;안병권
    • 대한조선학회논문집
    • /
    • 제54권4호
    • /
    • pp.321-328
    • /
    • 2017
  • In practice, cavitation phenomena occur in unbounded flows. However, the wall effect is unavoidable during experiments at a closed section such as a cavitation tunnel. Especially, supercavity generated behind a cavitator is relatively large and thick, so that geometric and dynamic characteristics of the cavity are affected by the tunnel wall. In order to apply experimental results into the unbounded flow field, physical correlations are necessary. In this paper, we proposed an image method based on a potential flow to simulate the wall effect. Considering two-dimensional wedge-shaped bodies, configurations and drag characteristics of the cavity were examined according to the distance ratio to the wall surface. The results were compared and verified with existing theoretical and experimental results.

AN INVARIANT FORTH-ORDER CURVE FLOW IN CENTRO-AFFINE GEOMETRY

  • Yuanyuan Gong;Yanhua Yu
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.743-760
    • /
    • 2024
  • In this paper, we are devoted to study a forth order curve flow for a smooth closed curve in centro-affine geometry. Firstly, a new evolutionary equation about this curve flow is proposed. Then the related geometric quantities and some meaningful conclusions are obtained through the equation. Next, we obtain finite order differential inequalities for energy by applying interpolation inequalities, Cauchy-Schwartz inequalities, etc. After using a completely new symbolic expression, the n-order differential inequality for energy is considered. Finally, by the means of energy estimation, we prove that the forth order curve flow has a smooth solution all the time for any closed smooth initial curve.

환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화 (Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation)

  • 이상혁;권오준;허남건
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

용융탄산염 연료전지 Anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical Analysis of the Gas Flow Distribution Characteristics in the Anode Flow Channel of Molten Carbonate Fuel Cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.834-839
    • /
    • 2009
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}$1% between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

용융탄산염 연료전지 anode 유로 채널에서의 가스 유동 분포에 관한 수치해석적 연구 (Numerical analysis of the gas flow distribution characteristics in the anode flow channel of the molten carbonate fuel cell (MCFC))

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3120-3124
    • /
    • 2008
  • A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold of the internal reforming type molten carbonate fuel cell (MCFC). Considering the computational difficulties associated with the size and geometric complexity of the MCFC system, the polyhedral meshes that can reduce mesh connectivity problems at the intersection of the channel and the manifold are adopted and chemical reactions inside the MCFC system are not included. Through this study, the gas flow rate uniformity of the anode channels is mainly analyzed to provide basic insights into improved design parameters for anode flow channel design. Results indicate that the uniformity in flow-rate is in the range of ${\pm}1%$ between the anode channels. Also, the mal-distributed inlet flow-rate conditions and the change in the size of the manifold depth have no significant effect on the flow-rate uniformity of the anode channels.

  • PDF