
J. Korean Math. Soc. 61 (2024), No. 4, pp. 743–760

https://doi.org/10.4134/JKMS.j230497

pISSN: 0304-9914 / eISSN: 2234-3008

AN INVARIANT FORTH-ORDER CURVE FLOW IN
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Abstract. In this paper, we are devoted to study a forth order curve

flow for a smooth closed curve in centro-affine geometry. Firstly, a new
evolutionary equation about this curve flow is proposed. Then the re-

lated geometric quantities and some meaningful conclusions are obtained
through the equation. Next, we obtain finite order differential inequal-

ities for energy by applying interpolation inequalities, Cauchy-Schwartz

inequalities, etc. After using a completely new symbolic expression, the
n-order differential inequality for energy is considered. Finally, by the

means of energy estimation, we prove that the forth order curve flow has

a smooth solution all the time for any closed smooth initial curve.

1. Introduction

In the past few decades, considerable researches centered on the curve shape
evolution over time in Euclidean space have made great progress; see, for in-
stance, [2,3,5–10,12–15,17–19,24], etc. Among them, the curve shortening flow
(CSF) is the simplest curve evolution problem. It was used firstly by Mullins
[15] to organize the model of the motion of grain boundaries. The curve evo-
lution problem was also discussed by Gage-Hamilton [6] and Grayson [8, 9].
Their result expressed that the CSF with a convex closed curve in the plane as
initial condition will shrink the curve to a point in finite time while evolving
toward a circular shape at an infinite time limit. The book by Chou and Zhu
[3] provided an excellent and unified account of many results related to flowing
curves by curvature. In the Euclidean plane R2, a forth order curve flow

(1.1)
∂C

∂t
=
(
−κss + κ3

)
N + 3κκsT

was proposed by Yang and Fu [24]. Here T , N are the unit tangent vector
and unit normal vector, respectively. κ is the Euclidean curvature of the curve
C. It was shown that the flow (1.1) has a smooth solution for all time by
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assuming some additional conditions. Liu and Jian [12] also studied a forth
order Euclidean geometry heat equation

(1.2)
∂C

∂t
= HN,

H = κss −
1

2
κ3 +

(
1

2
c20 + λ1

)
κ+ λ2,

where c0, λ1, λ2 are all constants. It means that for any smooth closed initial
curve, the heat equation has a smooth solution that exists for all time as time
goes to infinity. In addition, the problems of flows about preserving some geo-
metric quantities are also concentrated by people. The special area-preserving
and length-preserving flows were deeply studied in [10,13,17–19]. The analysis
of fourth and higher order partial differential equations (PDEs) is indeed an
area of increasing interest in mathematics. Researchers are actively studying
the behavior of solutions to such equations and seeking to understand their
properties. Geometric analysis techniques have been instrumental in obtain-
ing many of the known results in this field. These methods utilize geometric
structures and tools from differential geometry to analyze and study PDEs.
They have provided valuable insights into the behavior of solutions and helped
uncover deep connections between geometry and analysis. However, there are
still significant challenges ahead. Generalizing these techniques to apply them
to more classes of equations and understanding the behavior of solutions in
complex settings remains an open question. Despite these ongoing questions,
progress continues to be made in the analysis of fourth and higher order PDEs.
New results are being obtained, and there is great anticipation about the poten-
tial applications of these techniques to other areas of mathematics and physics.

Affine differential geometry is based on Lie group A(n,R) = GL(n,R)×Rn

consisting of affine transformation x → Ax + b, A ∈ GL(n,R), b ∈ Rn acting
on x ∈ Rn, so everything is invariant under the correspondence. The affine
curve shortening flow (ACSF) was firstly studied by Sapiro and Tannenbaum
[21], and further prolonged by Angenent, Sapiro and Tannebunm [1]. It was
turned out that the family of convex curves under the evolution equation

(1.3)
∂C

∂t
= Css

converges to an elliptical point in the Hausdorff metric and finally to a point
with absolute curvature converging to 2π. Centro-affine differential geometry
refers to the subgroup of the affine transformation group that keeps the origin
fixed, which is closely related to the geometry induced by the general linear
group x 7→ Ax, A ∈ GL(n,R), x ∈ Rn. Strictly speaking, centro-equiaffine dif-
ferential geometry arises in connection with the subgroup SL(n,R) of volume-
preserving linear transformations. These cases are usually mentioned in books
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devoted to (equi-)affine geometry [22]. Qu and Yang [20] discussed the exis-
tence and uniqueness to a second-order centro-affine geometry flow equation

(1.4)
∂C

∂t
=

(
λ+

∫ ξ

0

φdξ

)
C +

φ

2
Cξ,

where λ is a constant, ξ is the centro-affine arc length element, and φ is centro-
affine curvature. And they gave a classification to all closed self-similar solu-
tions of the curve flow. Inspired by (1.4), Jiang et al. [11] found a flow that
yielded a second-order nonlinear parabolic equation

(1.5)
∂φ

∂t
=

1

2
φξξ −

1

2
φ3 + 2φ

for the centro-affine curvature, which had some analogous properties to the
invariant heat flows in Euclidean, equi-affine and centro-equiaffine geometry.
In view of the above consideration, they presented a study of the isoperimetric
inequality in centro-affine plane geometry and additionally investigated the
long-term behavior of an invariant plane curve flow. Then, the forward and
backward limits over time were discussed. They also showed that a closed
convex embedded curve may converge to an ellipse when evolving according to
(1.5).

Mainly motivated by [2,5,12,16,20,24], the goal of this paper is to examine
the evolution of a fourth-order curve flow in centro-affine geometry. We will
begin by providing an overview of centro-affine geometry and the basics of
curve flows. Next, we will discuss the specifics of fourth-order curve flows and
their properties.

The paper aims to investigate the properties and behavior of the fourth-order
curve flow in centro-affine geometry and provides theoretical results regarding
the smoothness of its solutions. Now we summarize how the rest of the paper is
laid out. In Section 2, we review some basic contents of centro-affine geometry
and the known conclusions. At the same time, we give a centro-affine geometric
flow equation. Section 3 calculates the centro-affine curvature in the form
of energy estimation and obtain the n-order results according to the integral
inequality. Combining the results of energy estimates, we ultimately give the
proof of Theorem 1.1 in Section 4.

Theorem 1.1. Assume C (·, t) is a solution of the centro-affine heat flow (2.6)
in a maximal interval [0, ω), ω ≤ ∞, where the initial curve C0 is a closed
smooth embedded curve. Then the solution exists as long as the L2-form of the
curvature φ of C (·, t) is finite. Furthermore, when ω is finite,∮

C(·,t)
φ2dξ ≥ D (ω − t)

− 1
4

for some constant D. When ω is infinity, the curvature φ of C (·, t) converges
smoothly to a constant, that is, C (·, t) converges to an ellipse.
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2. Preliminaries

In this section, we mainly review and summarize some fundamental concepts
that will be useful for further discussions. For example, the affine geometry
heat flow equation, arc length element, redefined metric and so on (for detail
see [16]). In the rest of the section, we will give derivation of the evolution
equations for quantities. The following facts are all based on the article [16,20].

2.1. Centro-affine differential geometry

One important result of affine differential geometry is the theory of centro-
affine invariance. Here, “centro-affine” refers to a type of transformation that
preserves both ratios of distances along lines and the barycenter of every set of
points. If we express the centro-affine action of two-dimensional plane in the
form of matrix product, then there will be the following form:(

x2

y2

)
= h

(
a11 a12
a21 a22

)(
x1

y1

)
,

where det ( a11 a12
a21 a22

) = 1 and h ̸= 0. Furthermore, the centro-affine transforma-
tion in the plane is defined as

(2.1) X = BX,

where X is a vector of the plane, B is a real 2 × 2 matrix whose determinant
is not equal to zero. Here we take B ∈ GL (2,R). When B ∈ SL (2,R), we call
(2.1) centro-equiaffine transformation.

In order to describe the operation relationship of the following formulas more
conveniently, here and thereafter we use

[X,Y ] = det (X,Y )

to express the determinant of the 2× 2 matrix whose columns are given by the
two vectors X, Y . Moreover, we define

g =

√
ϵ
[Cp, Cpp]

[C,Cp]

as the centro-affine invariant metric. Here p is a free parameter of the curve

C, Cp = dC
dp , Cpp = d2C

dp2 , and

(2.2) ϵ = sgn

(
[Cp, Cpp]

[C,Cp]

)
,

where sgn stands for symbolic function.
Therefore, the centro-affine arc length element is

ξ(p) =

∫ p

p0

g (x) dx.
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Definition 2.1 ([20]). A curve C (p) : I → R2 is said to be a star-shaped
centro-affine curve if

K0 = [C,Cp] ̸= 0.

Definition 2.2 ([20]). A curve C (p) : I → R2 is said to be a regular star-
shaped centro-affine curve if

Ki = [Ci, Ci+1] ̸= 0, i = 0, 1, . . . , n,

where C0 = C and Ci =
diC
dpi , i ≥ 1.

In this article, we focus on the regular curves defined by Definition 2.2. From
(2.2), we wish to point out that the coefficient ϵ determines whether or not the
vectors C,Cξξ located on the same direction of the vector Cξ. By extension,
the value of ϵ describes the bending directions of C. For a regular curve C,
ϵ ≡ 1 or ϵ ≡ −1.

Lemma 2.3 ([16]). If the curve C is closed, then ϵ = 1 and the origin lies
inside every simple closed loop of the curve C.

Lemma 2.4 ([16]). If the curve C is closed, then
∮
C
φdξ = 0.

2.2. A forth-order flow in centro-affine differential geometry

Definition 2.5 ([16]). Let C : S1 × I → R2 be a family of embedded smooth
closed curves, t ∈ I is a parameter for time and p ∈ S1 is a free parameter.
The centro-affine geometry heat flow equation is defined as the form

(2.3)
∂C

∂t
= β (φ (ξ, t))Cξξ,

where ξ is centro-affine arc length element, φ is centro-affine curvature and β
stands for the function related to φ. We assume the family of curves meet the
condition

(2.4) C (ξ, 0) = C0 (ξ) ,

where the initial curve C0 is closed and convex.

For the convenience of the following narration, we use

Cnξ = Cξ···ξ =
∂nC

∂ξn

to express the n-order partial derivative of the curve C to arc length element
ξ. Because Cξ and C do not constitute a parallel relationship, C2ξ is the linear
representation of Cξ, C. Equation (2.3) can be rewritten as

(2.5)
∂C

∂t
= WCξ + UC,

where W, U are smooth functions.
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Through a series of calculations in [16], we get

gt
g

= Wξ +
1

2
ϵφUξ −

1

2
ϵU2ξ

and
∂φ

∂t
= Wφξ + 2Uξ −

ϵ

2

(
φξUξ + φ2Uξ − U3ξ

)
.

In this paper, we are mainly concerned about the flow (2.5) with

U = −φξ, W = −1

2
φ2ξ.

Namely, from Lemma 2.3, we can see

(2.6)
∂C

∂t
= −1

2
φ2ξCξ − φξC

and

(2.7)
1

g

∂g

∂t
= −1

2
φφ2ξ,

∂φ

∂t
= −1

2
φ4ξ +

1

2
φ2φ2ξ − 2φ2ξ.

It is obviously to see that, p and t are two independent variables, so ∂
∂t and

∂
∂p can commute during calculation. The relationship between the arc length

ξ, the curve length L and time t are as follows.

Lemma 2.6. The following relation holds

∂

∂t

∂

∂ξ
− ∂

∂ξ

∂

∂t
=

1

2
φφ2ξ

∂

∂ξ
.

Proof. Straightforward checking shows

∂

∂t

∂

∂ξ
=

∂

∂t

(
1

g

∂

∂p

)
=

1

g

∂

∂t

∂

∂p
− 1

g2
∂g

∂t

∂

∂p

=
1

g

∂

∂p

∂

∂t
− 1

g

∂g

∂t

∂

∂ξ

=
∂

∂ξ

∂

∂t
+

1

2
φφ2ξ

∂

∂ξ
.

□

Lemma 2.7. The relationship between the curve length L and the time t is
given by

(2.8)
∂L

∂t
=

1

2

∮
C

φ2
ξdξ.

Proof. From formula (2.7), a straightforward computation yields that

∂L

∂t
=

∂

∂t

∮
C

dξ =
∂

∂t

∮
C

gdp =

∮
C

1

g

∂g

∂t
dξ =

1

2

∮
C

φ2
ξdξ. □

In the following, we assume that the existence and uniqueness of the local
solution of (2.6) holds for each initial value C(·, 0) = C0.
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3. The energy estimates of the centro-affine curvature

The isoperimetric inequality is a mathematical principle that relates the
length L of a closed curve in a plane to the area A enclosed by the curve. It
states that among all closed curves with the same enclosed area, a circle has
the smallest perimeter. In other words, if we have different closed curves in a
plane that enclose the same area, the one with the shortest perimeter or length
will be the circle. This result demonstrates the efficiency of the circular shape
in terms of maximizing the area within a given perimeter.

It attracts people’s interest because of its intrinsic geometric characteristics
and wide applications. In this section, the centro-affine isoperimetric inequality
will be mentioned and we will also research the energy estimates of the centro-
affine curvature.

We have the following isoperimetric inequality in Euclidean plane:

L2 ≤ 4πA,

where the equality holds when the curve is a circle. As is seen in [23], the
equi-affine isoperimetric inequality in affine space is

L3 ≤ 8π2A,

and the equality holds only for the ellipse. In centro-affine geometry, the con-
clusion is

Proposition 3.1 ([11]). In centro-affine geometry, for any smooth convex em-
bedded closed curve C, the centro-affine perimeter of the curve

L =

∮
C

dξ ≤ 2π,

and equality holds if and only if C is an ellipse centered at the origin.

We will apply several inequalities in this manuscript, and the first one to
mention is called the Young inequality [4]:

(3.1) ab ≤ aq1

q1
+

bq2

q2
,

where a, b, q1, q2 are positive reals, and q1, q2 satisfy

1

q1
+

1

q2
= 1.

With the same exponents as above, the Hölder inequality [4] is

(3.2)

∫
Ω

uvdx ≤ ∥u∥Lq1 (Ω)∥v∥Lq2 (Ω).

As a consequence, we can get the following interpolation inequality [2]. For
the periodic function u with zero mean, we can see the inequality

(3.3) ∥u(j)∥Lq ≤ D0∥u∥1−θ
Lq1 ∥u(k)∥θLq2 , θ ∈ (0, 1)
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is always true, where j, k are the order of the partial derivative of u. q, q1, q2,
j, k satisfy q1, q2, q > 1, j ≥ 0,

1

q
= j + θ

(
1

q2
− k

)
+ (1− θ)

1

q1
,

and
j

k
≤ θ ≤ 1.

The constant D0 in (3.3) depends on q, q1, q2, j and k only.
Throughout the article, we always take for granted that Di, ϵi, ηi, ζi, ιi, i ∈ Z

are defined as constants.
Utilizing the similar technology given in [2] and simultaneously (2.7), we

reach
∂

∂t

∮
C

φ2dξ =
∂

∂t

∮
C

φ2gdp

=

∮
C

(2φφt + φ2 gt
g
)dξ

=

∮
C

(−φφ4ξ + φ3φ2ξ − 4φφ2ξ −
1

2
φ3φ2ξ)dξ

=

∮
C

−φ2
2ξdξ −

∮
C

3

2
φ2φ2

ξdξ +

∮
C

4φ2
ξdξ.

In accordance with (3.3), we conclude that(∮
C

φ4dξ

) 1
2

≤ D1

(∮
C

φ2dξ

) 7
8
(∮

C

φ2
2ξdξ

) 1
8

,

(∮
C

φ4
ξdξ

) 1
2

≤ D2

(∮
C

φ2dξ

) 3
8
(∮

C

φ2
2ξdξ

) 5
8

,

(∮
C

φ2
ξdξ

) 1
2

≤ D3

(∮
C

φ2dξ

) 1
2
(∮

C

φ2
2ξdξ

) 1
2

.

It follows that ∮
C

φ2φ2
ξdξ ≤

(∮
C

φ4dξ

) 1
2
(∮

C

φ4
ξdξ

) 1
2

≤ D1D2

(∮
C

φ2dξ

) 5
4
(∮

C

φ2
2ξdξ

) 3
4

.

Applying the Young inequality (3.1), we have∮
C

φ2φ2
ξdξ ≤ D1D2ϵ1

− 3
4

(∮
C

φ2dξ

) 5
4
(
ϵ1

∮
C

φ2
2ξdξ

) 3
4

≤ ϵ1

∮
C

φ2
2ξdξ +

27

256
(D1D2)

4
ϵ−3
1

(∮
C

φ2dξ

)5

.
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Moreover, we can also get∮
C

φ2
ξdξ ≤ ϵ2

∮
C

φ2
2ξdξ +

D2
3

4ϵ2

∮
C

φ2dξ.

Let

E =

∮
C

φ2dξ,

we deduce that

∂

∂t

∮
C

φ2dξ ≤
(
−1− 3

2
ϵ1 + 4ϵ2

)∮
C

φ2
2ξdξ + P1 (E) ,

where P1(E) = − 81
512 (D1D2)

4ϵ−3
1 E5 +

D2
3

ϵ2
E.

Choosing − 3
2ϵ1 + 4ϵ2 = 1, we obtain

(3.4)
∂E

∂t
≤ D4

(
E + E5

)
.

From Lemma 2.6, one knows

∂

∂t

∮
C

φ2
ξdξ =

∮
C

(2φξφξt + φ2
ξ

gt
g
)dξ

=

∮
C

[
2φξ(−

1

2
φ5ξ +

3

2
φφξφ2ξ +

1

2
φ2φ3ξ − 2φ3ξ)−

1

2
φφ2

ξφ2ξ

]
dξ

= −
∮
C

φξφ5ξdξ +
5

2

∮
C

φφ2
ξφ2ξdξ +

∮
C

φ2φξφ3ξdξ − 4

∮
C

φξφ3ξdξ

= −
∮
C

φ2
3ξdξ −

1

6

∫
C

φ4
ξdξ −

∮
C

φ2φ2
2ξdξ + 4

∮
C

φ2
2ξdξ.

Now, doing the same thing as above, we can easily check that the following
inequalities are valid:∮

C

φ4
ξdξ ≤ D5

(∮
C

φ2dξ

) 7
6
(∮

C

φ2
3ξdξ

) 5
6

,

(∮
C

φ4dξ

) 1
2

≤ D6

(∮
C

φ2dξ

) 11
12
(∮

C

φ2
3ξdξ

) 1
12

,

(∮
C

φ4
2ξdξ

) 1
2

≤ D7

(∮
C

φ2dξ

) 1
4
(∮

C

φ2
3ξdξ

) 3
4

,

∮
C

φ2
2ξdξ ≤ D8

(∮
C

φ2dξ

) 1
3
(∮

C

φ2
3ξdξ

) 2
3

.

Thus, ∮
C

φ4
ξdξ ≤ ϵ3

∮
C

φ2
3ξdξ +

1

6
D6

5

(
6

5
ϵ3

)−5(∮
C

φ2dξ

)7

,
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C

φ2φ2
2ξdξ ≤ D6D7

(∮
C

φ2dξ

) 7
6
(∮

C

φ2
3ξdξ

) 5
6

≤ ϵ4

∮
C

φ2
3ξdξ +

1

6

(
6

5
ϵ4

)−5

(D6D7)
12

(∮
C

φ2dξ

)7

,

∮
C

φ2
2ξdξ ≤ ϵ5

∮
C

φ2
3ξdξ +

1

3

(
3

2
ϵ5

)− 2
3

D3
8

∮
C

φ2dξ.

Using the integral inequalities, we see

(3.5)
∂

∂t

∮
C

φ2
ξdξ ≤ D9

(
E + E7

)
.

Finally,

∂

∂t

∮
C

φ2
2ξdξ

= −
∮
C

φ2
4ξdξ −

∮
C

φ2φ2
3ξdξ +

3

2

∮
C

φ2
ξφ

2
2ξdξ +

∮
C

φφ3
2ξdξ + 4

∮
C

φ2
3ξdξ.

Proceeding to the next step, we introduce∮
C

φ2φ2
3ξdξ ≤ D10

(∮
C

φ2dξ

) 9
8
(∮

C

φ2
4ξdξ

) 7
8

,

∮
C

φ2
ξφ

2
2ξdξ ≤ D11

(∮
C

φ2dξ

) 9
8
(∮

C

φ2
4ξdξ

) 7
8

,

∮
C

φφ3
2ξdξ ≤ D12

(∮
C

φ2dξ

) 9
8
(∮

C

φ2
4ξdξ

) 7
8

,

∮
C

φ2
3ξdξ ≤ D13

(∮
C

φ2dξ

) 1
4
(∮

C

φ2
4ξdξ

) 3
4

,

and ultimately we acquire

(3.6)
∂

∂t

∮
C

φ2
2ξdξ ≤ D14

(
E + E9

)
.

For facilitating the calculations, we assume Pn
m (ω) is any linear combination

of the type ∂i1
ξ ω ∗ · · · ∗ ∂im

ξ ω with universal constant coefficients, where n =
i1 + · · ·+ im is the total number of derivatives, then we observe

Pµ
v (ω) ∗ Pα

β (ω) = Pµ+α
v+β (ω) , ∂ξP

µ
v (ω) = Pµ+1

v (ω) .

By a further arrangement, we can rewrite derivative of the curvature with
respect to time t as

(3.7) φt = −1

2
φ4ξ + P 2

3 (φ) + P 2
1 (φ) , φξt = −1

2
φ5ξ + P 3

3 (φ) + P 3
1 (φ) .
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Lemma 3.2. The evolution of (φkξ)t is given by

(φkξ)t = −φ(k+4)ξ + P k+2
3 (φ) + P k+2

1 (φ)

for any nonnegative integer k.

Proof. In order to get the conclusion, we use the mathematical induction. Tak-
ing k = 0, by means of (3.7), we can prove that the equation holds for φt. Now
we assume the conclusion is true for k = n. Then, when k = n + 1, we can
easily verify that

φ(n+1)ξt = φ(nξ)tξ −
1

g

∂g

∂t
φ(n+1)ξ

=
∂

∂ξ

[
−φ(n+4)ξ + Pn+2

3 (φ) + Pn+2
1 (φ)

]
+ Pn+3

3 (φ)

= −φ(n+5)ξ + Pn+3
3 (φ) + Pn+3

1 (φ) .

This ends the proof of the lemma. □

Proposition 3.3. Let C : I → R2 be a smooth closed curve. For any Pµ
v (φ),

which includes only derivatives of φ of order at most l − 1, one has∮
C

|Pµ
v (φ) |dξ ≤ η0

∮
C

(
∂l
ξ (φ)

)2
dξ +D16η

µ+ v
2
−1

µ+ v
2
−1−2l

0

(∮
C

φ2dξ

) vl−µ− v
2
+1

2l−µ− v
2
+1

,

where η0 ≥ 0, v ≥ 2.

Proof. Consider Pµ
v (φ) = ∂i1

ξ (φ) · · · ∂iv
ξ (φ), where i1 + · · ·+ iv = µ. Through

the Hölder inequality, we reach∮
C

Pµ
v (φ) dξ ≤

[∮
C

(
∂i1
ξ (φ)

)v
dξ

] 1
v

· · ·
[∮

C

(
∂iv
ξ (φ)

)v
dξ

] 1
v

=

v∏
j=1

[∮
C

(
∂
ij
ξ (φ)

)v
dξ

] 1
v

=

v∏
j=1

||∂ij
ξ (φ) ||Lv .

By interpolation inequality (3.3), one has

||∂ij
ξ (φ) ||Lv ≤ D15||φ||

1−θj
L2 ||∂l

ξ (φ) ||
θj
L2 ,

where θj =
1
l

(
ij +

1
2 − 1

v

)
. Therefore,∮

C

Pµ
v (φ) dξ ≤ D15||φ||1−θ1

L2 ||∂l
ξ (φ) ||

θ1
L2 · · ·D15||φ||1−θv

L2 ||∂l
ξ (φ) ||

θv
L2

= Dv
15||φ||

v−(θ1+···+θv)
L2 ||∂l

ξ (φ) ||
θ1+···+θv
L2

= Dv
15||φ||

v− 1
l (µ+

v
2−1)

L2 ||∂l
ξ (φ) ||

1
l (µ+

v
2−1)

L2 .
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According to (3.1), we can prove that∮
C

Pµ
v (φ) dξ ≤ η0

∮
C

(
∂l
ξ (φ)

)2
dξ +

(
1−

µ+ v
2 − 1

2k

)
D

v

1− 1
2k (µ+ v

2
−1)

15

×
(

2lη0
µ+ v

2 − 1

) µ+ v
2
−1

µ+ v
2
−1−2l

(∫
C

φ2dξ

) vl−µ− v
2
+1

2l−µ− v
2
+1

= η0

∮
C

(
∂l
ξ (φ)

)2
dξ +D16η

µ+ v
2
−1

µ+ v
2
−1−2l

0

(∮
C

φ2dξ

) vl−µ− v
2
+1

2l−µ− v
2
+1

.
□

Proposition 3.4. For the centro-affine heat flow, the following inequality
holds:

(3.8)
∂

∂t

∮
C

φ2
nξdξ ≤ D19

(
E + E2n+5

)
.

Proof. Lemma 3.2 gives

∂

∂t

∮
C

φ2
kξdξ =

∮
C

2φkξφkξt + φ2
kξ

gt
g
dξ

= −
∮
C

φ2
(k+2)ξdξ +

∮
C

P 2k+2
4 (φ) dξ +

∮
C

P 2k+2
2 (φ) dξ.

Applying Proposition 3.3 to P 2k+2
4 (φ), and combining with v = 4, µ = 2k+2,

l = k + 2, we arrive at∮
C

P 2k+2
4 (φ) dξ ≤ η1

∮
C

φ2
(k+2)ξdξ +D16η

−(2k+3)
1

(∮
C

φ2dξ

)2k+5

.

In addition, we also have∮
C

P 2k+2
2 (φ) dξ ≤ η2

∮
C

φ2
(k+2)ξdξ +D16η

−(k+1)
2

∮
C

φ2dξ.

Let η1 + η2 = 1, we get

d

dt

∮
C

φ2
kξdξ ≤ D17

(
E + E2k+5

)
,

which means the inequality (3.8) holds on for n = k. When n = k + 1,∮
C

P 2k+4
4 (φ) dξ ≤ η3

∮
C

φ2
(k+3)ξdξ +D16η

−(2k+5)
3

(∮
C

φ2dξ

)2k+7

,∮
C

P 2k+4
2 (φ) dξ ≤ η4

∮
C

φ2
(k+3)ξdξ +D16η

−(k+2)
4

∮
C

φ2dξ.

By the same way, we can see

∂

∂t

∮
C

φ2
(k+1)ξdξ ≤ D18(E + E2k+7).

Therefore, according to the mathematical induction, we can get the conclusion.
□
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4. Proof of Theorem 1.1

We start with the following lemmas and propositions which encourage us
present several conclusions which play a key role to complete the final proof.

Lemma 4.1. The infinite integral
∫ +∞
0

E (t) dt converges.

Proof. Integrating (2.8) with respect to t, and putting t = 0, t = t leads to

1

2

∫ t

0

dt

∮
C

φ2
ξ (ξ, t) dξ = L (t)− L (0) .

When t goes to infinity, due to Proposition 3.1, we can easily check that∫ +∞

0

dt

∮
C

φ2
ξ (ξ, t) dξ ≤ L0

holds for some constant L0. Furthermore, with the Wirtinger inequality, we
can show that ∫ +∞

0

dt

∮
C

φ2 (ξ, t) dξ ≤ L1

for constant L1.
From the above inequalities and the monotone bounded principle, we can

gather that
∫ +∞
0

E (t) dt converges. □

Lemma 4.2.
∫ +∞
0

dt
∮
C
φ2
ξ(ξ, t)dξ converges.

Proof. Using monotone bounded principle and Lemma 4.1 gives the conclusion.
□

Proposition 4.3. The energy E (t) is uniformly bounded on the interval
[0,+∞).

Proof. Employing Lemma 4.1 and Cauchy convergence principle, it is easy to
obtain that for arbitrary ζ0 > 0, there exists j0 ≥ 0 such that when j ≥ j0, we
have ∫ j+1

j

E (t) dt ≤ ζ0.

Moreover, mean value theorem of integrals implies

E (tj) =

∫ j+1

j

E (t) dt ≤ ζ0,

where tj ∈ [j, j + 1]. Considering the time interval [tj , tj + 2], it can be easily
seen that

1 + E4 (t) ≤ Sj

holds because of the boundedness for the continuous function E (t), where Sj

is a constant. Therefore, by (3.4),

∂E (t)

∂t
≤ D4E (t)

[
1 + E4 (t)

]
≤ D4SjE (t) .
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Motivated by these results, for the case that D4 ≤ 1
4Sj

, we reach

(4.1)
∂E (t)

∂t
≤ 1

4
E (t) .

Straightforward checking shows

E(t) = E (tj) + E′ (ξ1) (t− tj)

≤ E (tj) +
1

2
E (ξ1) , ∀ξ1 ∈ (tj , t) ,

E (t) ≤ 3

2
E (tj) +

1

2
[E (ξ1)− E (tj)]

≤ 3

2
E (tj) +

1

22
E (ξ2) , ∀ξ2 ∈ (tj , ξ1) ,

E (t) ≤
(
1 +

1

2
+

1

22

)
E (tj) +

1

23
E (ξ3) , ∀ξ3 ∈ (tj , ξ2) ,

· · · · · · ,

E(t) ≤

(
n−1∑
k=0

1

2k

)
E (tj) +

1

2n
E (ξn)

≤ 2E (tj) +
1

2n
(Sj − 1)

1
4

< 2ζ0 +
1

2n
(Sj − 1)

1
4 , ∀ξn ∈ (tj , ξn−1) .

On the other hand, when D4 ≥ 1
4Sj

, we hereby begin by fixing time t into(
tj , tj +

1
2D4Sj

]
. Similar to the previous calculation process, we have

E (t) ≤ E (tj) +D4SjE (ξ1) (t− tj)

≤ E (tj) +
1

2
E (ξ1) , ∀ξ1 ∈ (tj , t) ,

E (t) ≤ 3

2
E (tj) +

1

2
[E (ξ1)− E (tj)]

≤ 3

2
E (tj) +

1

2
D4Sj · E (ξ2) ·

1

2D4Sj

=
3

2
E (tj) +

1

22
E (ξ2) , ∀ξ2 ∈ (tj , ξ1) ,

· · · · · · ,

E (t) < 2ζ0 +
1

2n
(Sj − 1)

1
4 < ζ1.

Taking into account the next time interval
(
tj +

1
2D4Sj

, tj +
1

D4Sj

]
, one can

show that

E (t) ≤ 2ζ1 +
1

2n
E (ξn) < ζ2.
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We can go faster in the computation since the strategy is the same as above.
Thus, a straightforward computation gives us

E (t) ≤

(
n−1∑
k=0

1

2k

)
E

(
tj +

k − 1

2D4Sj

)
+

1

2n
E (ξn)

≤ 2ζk−1 +
1

2n
E (ξn)

< ζk

for any t ∈
(
tj +

k−1
2D4Sj

, tj +
k

2D4Sj

]
, and ζk ≥ 2ζk−1 ≥ · · · ≥ 2kζ0.

In summary, we shall employ the following statement: the energy function
E(t) is uniformly bounded on the interval [0,+∞) because of the arbitrariness
of j. □

Proposition 4.4. lim
t→+∞

∮
C
φ2(ξ, t)dξ = 0.

Proof. Combining Proposition 4.3 and inequality (3.4) with the fact ∂E
∂t is

uniformly bounded, we assume

∂E

∂t
≤ M1

for t ∈ [0,+∞), and M1 is a positive constant. By the differential mean value
theorem, E(t) is uniformly continuous on [0,+∞).

Taking δ1 = ι1
M1

, one can confirm that for any ι1 > 0, t1, t2 ∈ [0,+∞), when

|t1 − t2| < δ1, we attain

|E (t1)− E (t2)| ≤ M1|t1 − t2|.

At the same time, by Lemma 4.1, for above δ1, there exists t ≥ 0, for arbitrary
t2 > t1 ≥ t, ∫ t2

t1

E (τ) dτ ≤ δ21
2
.

Hence,

E (t) =

∣∣∣∣∣E (t)− 2

δ1

∫ t3+
δ1
2

t3

E (τ) dτ +
2

δ1

∫ t3+
δ1
2

t3

E (τ) dτ

∣∣∣∣∣
≤ 2

δ1

∫ t3+
δ1
2

t3

|E (t)− E (τ)| dτ +
2

δ1

∣∣∣∣∣
∫ t3+

δ1
2

t3

E (τ) dτ

∣∣∣∣∣
<

(
1 +

1

M1

)
ι1.

Taking the limit as t → +∞, we write

lim
t→+∞

∮
C

φ2 (ξ, t) dξ = 0.
□
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Proposition 4.5. lim
t→+∞

∮
C
φ2
ξ (ξ, t) dξ = 0.

Proof. We use the same idea as we did in the preceding proposition. Let

F (t) =

∮
C

φ2
ξ (ξ, t) dξ.

Taking ∂F
∂t ≤ M2 and δ2 = ι2

M2
, one knows

F (t) ≤ 1

δ2

∫ t3+δ2

t3

|F (t)− F (τ)| dτ +
1

δ2

∣∣∣∣∣
∫ t3+δ2

t3

F (τ) dτ

∣∣∣∣∣
≤ ι2 +

1

δ2

δ22
2

<

(
1 +

1

2M2

)
ι2,

where M2 is a positive constant. □

We now back to the main part.

Proof of Theorem 1.1. If E (t) is uniformly bounded on [0, T ), by integrating
(3.5) and (3.6), we obtain that it implies a uniform bound on the L2-norm
of the first and the second derivatives of the curvature φ with respect to the
centro-affine arc length ξ. What is more, it follows from (3.8) and parabolic
regularity that all spatial and time derivatives of φ are uniformly bounded. In
fact, similar to [2], one can acquire a uniform Hk-bound on the curve with a
prescribed k. Hence, the local existence of solution for the forth order flow
equation (2.6) can be employed to extend the flow beyond T . Nevertheless,
according to Proposition 4.3, E (t) is uniformly bounded on [0,+∞). So the
existence of solution can be proved. If we take T to be ω, it can be concluded
that E (t) must become unbounded as a finite ω is approached. When ω is
finite and t is close to ω, which implies E (t) > 1, by integrating (3.4) from t
to ω, we have

E (t) ≥ 1

8D4
(ω − t)

− 1
4 .

This gives the desired lower bound for the blow-up rate. Finally, in view of
Proposition 4.4, Proposition 4.5, combined with Section 6 in [11], we can obtain
that the curvature φ smoothly converges to zero, namely that the curve C will
eventually shrink to an ellipse with the passage of time. As stated above, our
certification is complete. □
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