References
- S. Angenent, G. Sapiro, and A. Tannenbaum, On the affine heat equation for nonconvex curves, J. Amer. Math. Soc. 11 (1998), no. 3, 601-634. https://doi.org/10.1090/S0894-0347-98-00262-8
- K.-S. Chou, A blow-up criterion for the curve shortening flow by surface diffusion, Hokkaido Math. J. 32 (2003), no. 1, 1-19. https://doi.org/10.14492/hokmj/1350652421
- K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem, Chapman & Hall/CRC, Boca Raton, FL, 2001. https://doi.org/10.1201/9781420035704
- T. Dlotko, Sobolev Spaces and Embedding Theorems, Silesian University, Poland, 2014.
- G. Dziuk, E. Kuwert, and R. Schatzle, Evolution of elastic curves in Rn: existence and computation, SIAM J. Math. Anal. 33 (2002), no. 5, 1228-1245. https://doi.org/10.1137/S0036141001383709
- M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69-96. http://projecteuclid.org/euclid.jdg/1214439902
- L. Gao and Y. Zhang, On Yau's problem of evolving one curve to another: convex case, J. Differential Equations 266 (2019), no. 1, 179-201. https://doi.org/10.1016/j.jde.2018.07.037
- M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285-314. http://projecteuclid.org/euclid.jdg/1214441371 https://doi.org/10.4310/jdg/1214441371
- M. A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71-111. https://doi.org/10.2307/1971486
- L. Jiang and S. Pan, On a non-local curve evolution problem in the plane, Comm. Anal. Geom. 16 (2008), no. 1, 1-26. https://dx.doi.org/10.4310/CAG.2008.v16.n1.a1
- X. Jiang, Y. Yang, and Y. Yu, An eternal curve flow in centro-affine geometry, J. Funct. Anal. 284 (2023), no. 10, Paper No. 109904, 23 pp. https://doi.org/10.1016/j.jfa.2023.109904
- Y. N. Liu and H. Y. Jian, A curve flow evolved by a fourth order parabolic equation, Sci. China Ser. A 52 (2009), no. 10, 2177-2184. https://doi.org/10.1007/s11425-009-0143-2
- L. Ma and L. Cheng, A non-local area preserving curve flow, Geom. Dedicata 171 (2014), 231-247. https://doi.org/10.1007/s10711-013-9896-4
- L. Ma and A. Zhu, On a length preserving curve flow, Monatsh. Math. 165 (2012), no. 1, 57-78. https://doi.org/10.1007/s00605-011-0302-8
- W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900-904. https://doi.org/10.1063/1.1722511
- P. J. Olver, C. Qu, and Y. Yang, Feature matching and heat flow in centro-affine geometry, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 093, 22 pp. https://doi.org/10.3842/SIGMA.2020.093
- S. Pan, On a perimeter-preserving plane curve flow, Appl. Math. J. Chinese Univ. Ser. B 16 (2001), no. 4, 409-417. https://doi.org/10.1007/s11766-001-0009-z
- S. Pan and J. Yang, On a non-local perimeter-preserving curve evolution problem for convex plane curves, Manuscripta Math. 127 (2008), no. 4, 469-484. https://doi.org/10.1007/s00229-008-0211-x
- S. Pan and Y. Yang, An anisotropic area-preserving flow for convex plane curves, J. Differential Equations 266 (2019), no. 6, 3764-3786. https://doi.org/10.1016/j.jde.2018.09.011
- C. Qu and Y. Yang, An invariant second-order curve flow in centro-affine geometry, J. Geom. Phys. 174 (2022), Paper No. 104447, 17 pp. https://doi.org/10.1016/j.geomphys.2021.104447
- G. Sapiro and A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994), no. 1, 79-120. https://doi.org/10.1006/jfan.1994.1004
- U. Simon, Affine differential geometry, in Handbook of differential geometry, Vol. I, 905-961, North-Holland, Amsterdam, 2000. https://doi.org/10.1016/S1874-5741(00)80012-6
- B. Q. Su, Affine Differential Geometry, Sci. Press Beijing, Beijing, 1983.
- D. Yang and Y. Fu, The evolution of a class of curve flows, J. Geom. Phys. 159 (2021), Paper No. 103925, 8 pp. https://doi.org/10.1016/j.geomphys.2020.103925