DOI QR코드

DOI QR Code

AN INVARIANT FORTH-ORDER CURVE FLOW IN CENTRO-AFFINE GEOMETRY

  • Yuanyuan Gong (Department of Mathematics Northeastern University) ;
  • Yanhua Yu (Department of Mathematics Northeastern University)
  • Received : 2023.09.18
  • Accepted : 2023.12.07
  • Published : 2024.07.01

Abstract

In this paper, we are devoted to study a forth order curve flow for a smooth closed curve in centro-affine geometry. Firstly, a new evolutionary equation about this curve flow is proposed. Then the related geometric quantities and some meaningful conclusions are obtained through the equation. Next, we obtain finite order differential inequalities for energy by applying interpolation inequalities, Cauchy-Schwartz inequalities, etc. After using a completely new symbolic expression, the n-order differential inequality for energy is considered. Finally, by the means of energy estimation, we prove that the forth order curve flow has a smooth solution all the time for any closed smooth initial curve.

Keywords

References

  1. S. Angenent, G. Sapiro, and A. Tannenbaum, On the affine heat equation for nonconvex curves, J. Amer. Math. Soc. 11 (1998), no. 3, 601-634. https://doi.org/10.1090/S0894-0347-98-00262-8
  2. K.-S. Chou, A blow-up criterion for the curve shortening flow by surface diffusion, Hokkaido Math. J. 32 (2003), no. 1, 1-19. https://doi.org/10.14492/hokmj/1350652421
  3. K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem, Chapman & Hall/CRC, Boca Raton, FL, 2001. https://doi.org/10.1201/9781420035704
  4. T. Dlotko, Sobolev Spaces and Embedding Theorems, Silesian University, Poland, 2014.
  5. G. Dziuk, E. Kuwert, and R. Schatzle, Evolution of elastic curves in Rn: existence and computation, SIAM J. Math. Anal. 33 (2002), no. 5, 1228-1245. https://doi.org/10.1137/S0036141001383709
  6. M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69-96. http://projecteuclid.org/euclid.jdg/1214439902
  7. L. Gao and Y. Zhang, On Yau's problem of evolving one curve to another: convex case, J. Differential Equations 266 (2019), no. 1, 179-201. https://doi.org/10.1016/j.jde.2018.07.037
  8. M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285-314. http://projecteuclid.org/euclid.jdg/1214441371
  9. M. A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71-111. https://doi.org/10.2307/1971486
  10. L. Jiang and S. Pan, On a non-local curve evolution problem in the plane, Comm. Anal. Geom. 16 (2008), no. 1, 1-26. https://dx.doi.org/10.4310/CAG.2008.v16.n1.a1
  11. X. Jiang, Y. Yang, and Y. Yu, An eternal curve flow in centro-affine geometry, J. Funct. Anal. 284 (2023), no. 10, Paper No. 109904, 23 pp. https://doi.org/10.1016/j.jfa.2023.109904
  12. Y. N. Liu and H. Y. Jian, A curve flow evolved by a fourth order parabolic equation, Sci. China Ser. A 52 (2009), no. 10, 2177-2184. https://doi.org/10.1007/s11425-009-0143-2
  13. L. Ma and L. Cheng, A non-local area preserving curve flow, Geom. Dedicata 171 (2014), 231-247. https://doi.org/10.1007/s10711-013-9896-4
  14. L. Ma and A. Zhu, On a length preserving curve flow, Monatsh. Math. 165 (2012), no. 1, 57-78. https://doi.org/10.1007/s00605-011-0302-8
  15. W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900-904.
  16. P. J. Olver, C. Qu, and Y. Yang, Feature matching and heat flow in centro-affine geometry, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 093, 22 pp. https://doi.org/10.3842/SIGMA.2020.093
  17. S. Pan, On a perimeter-preserving plane curve flow, Appl. Math. J. Chinese Univ. Ser. B 16 (2001), no. 4, 409-417. https://doi.org/10.1007/s11766-001-0009-z
  18. S. Pan and J. Yang, On a non-local perimeter-preserving curve evolution problem for convex plane curves, Manuscripta Math. 127 (2008), no. 4, 469-484. https://doi.org/10.1007/s00229-008-0211-x
  19. S. Pan and Y. Yang, An anisotropic area-preserving flow for convex plane curves, J. Differential Equations 266 (2019), no. 6, 3764-3786. https://doi.org/10.1016/j.jde.2018.09.011
  20. C. Qu and Y. Yang, An invariant second-order curve flow in centro-affine geometry, J. Geom. Phys. 174 (2022), Paper No. 104447, 17 pp. https://doi.org/10.1016/j.geomphys.2021.104447
  21. G. Sapiro and A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994), no. 1, 79-120. https://doi.org/10.1006/jfan.1994.1004
  22. U. Simon, Affine differential geometry, in Handbook of differential geometry, Vol. I, 905-961, North-Holland, Amsterdam, 2000. https://doi.org/10.1016/S1874-5741(00)80012-6
  23. B. Q. Su, Affine Differential Geometry, Sci. Press Beijing, Beijing, 1983.
  24. D. Yang and Y. Fu, The evolution of a class of curve flows, J. Geom. Phys. 159 (2021), Paper No. 103925, 8 pp. https://doi.org/10.1016/j.geomphys.2020.103925