• 제목/요약/키워드: Geometric Flow

검색결과 596건 처리시간 0.03초

GENERALIZED HYPERBOLIC GEOMETRIC FLOW

  • Shahroud Azami;Ghodratallah Fasihi Ramandi;Vahid Pirhadi
    • 대한수학회논문집
    • /
    • 제38권2호
    • /
    • pp.575-588
    • /
    • 2023
  • In the present paper, we consider a kind of generalized hyperbolic geometric flow which has a gradient form. Firstly, we establish the existence and uniqueness for the solution of this flow on an n-dimensional closed Riemannian manifold. Then, we give the evolution of some geometric structures of the manifold along this flow.

HARNACK INEQUALITY FOR A NONLINEAR PARABOLIC EQUATION UNDER GEOMETRIC FLOW

  • Zhao, Liang
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1587-1598
    • /
    • 2013
  • In this paper, we obtain some gradient estimates for positive solutions to the following nonlinear parabolic equation $$\frac{{\partial}u}{{\partial}t}={\triangle}u-b(x,t)u^{\sigma}$$ under general geometric flow on complete noncompact manifolds, where 0 < ${\sigma}$ < 1 is a real constant and $b(x,t)$ is a function which is $C^2$ in the $x$-variable and $C^1$ in the$t$-variable. As an application, we get an interesting Harnack inequality.

수평 T형 분지관 내 냉매 이상유동 분배특성에 미치는 변수들의 영향 (Effect of Parameters on the Two-Phase Flow Distribution Characteristics of Refrigerants in a Horizontal T-Junction)

  • 태상진;조금남
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2006
  • The present study has been experimentally investigated the effect of geometric and operating parameters on the two-phase flow distribution of refrigerants in a horizontal T-junction. The operating parameters were the kind of refrigerants (R-22, R- l34a, and R-410A), saturated temperature, and the inlet mass flux and quality. The geometric parameters were the tube diameter and the tube diameter ratio. The measured data of refrigerants were compared with the values predicted using the models developed by several researchers for air/water or steani/water two-phase flow. Among the operating parameters, the inlet Quality was the most sensitive to the mass flow rate ratio. Between the geometric parameters, the tube diameter ratio was more sensitive than tube diameter.

상용 CFD코드를 이용한 공조기 입구 형상 설계 (Inlet Shape Design of Air Handling Unit Using Commercial CFD Code)

  • 최영석;주종일;이용갑;주원구
    • 한국유체기계학회 논문집
    • /
    • 제5권3호
    • /
    • pp.54-59
    • /
    • 2002
  • A commercial CFD code is used to compute the 3-D viscous flow field within the inlet flow concentrator of the newly developed AHU (Air Handling Unit). To improve the performance of the AHU, the inlet air needs to be gradually accelerated to the fan's annular velocity without causing turbulence or flow separation. Three major geometric parameters were selected to specify the inlet shape of the AHU. The performance of the AHU could be measured by the inlet and outlet flow uniformity and the total pressure loss through the inlet flow concentrator. Several numerical calculations were carried out to determine the influence of the geometric parameters on the performance of the AHU. The best geometric values were decided to have efficient inlet shape with analyzing CFD calculation results.

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE YAMABE FLOW

  • Fang, Shouwen;Yang, Fei
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1113-1122
    • /
    • 2016
  • Let (M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Yamabe flow. In the paper we derive the evolution for the first eigenvalue of geometric operator $-{\Delta}_{\phi}+{\frac{R}{2}}$ under the Yamabe flow, where ${\Delta}_{\phi}$ is the Witten-Laplacian operator, ${\phi}{\in}C^2(M)$, and R is the scalar curvature with respect to the metric g(t). As a consequence, we construct some monotonic quantities under the Yamabe flow.

토크 컨버터의 형상 분석 (Geometrical Analysis of a Torque Converter)

  • 임원석
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.197-212
    • /
    • 1997
  • The performance of a torque converter can be expressed by the performance parameters such as flow radius and flow angle, on the mean flow path. The geometric analysis of the torque converter is required to determine these parameters for the modeling of the torque converter. In general, the blade shape is depicted by three dimensional data at the mid-surface of blade or those of the pressure and suction side. To generate three dimensional model of the blade using the data mentioned above, a consistent data format and a shape generation algorithm are required. This paper presents a useful consistent data format of the blades and an algorithm for the geometrical shape generation. By the geometric analysis program to which the shape generation algorithm is embedded, the variation of blade angles in rotating element analyzed. Then finally, the analyzed results of geometric profile of a blade are compared with those of the blade design principle, so called forced vortex theorem.

  • PDF

가스흐름 제어에 의한 균일한 다결정 3C-SiC 박막 성장 (The uniform polycrystalline 3C-SiC thin film growth by the gas flow control)

  • 윤규형;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.92-92
    • /
    • 2008
  • The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of polycrystalline 3C-SiC thin films by the gas flow control according to the location change of geometric structure. The polycrystalline 3C-SiC thin film was deposited by APCVD(Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS(Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 5 slm Ar as the main flow gas. According to the location of geometric structure, surface fringes and flatness changed. It shows the distribution of thickness is formed uniformly in the specific location of the geometric structure.

  • PDF

도시부 신호교차로의 기본용량 및 기하구조 보정계수 (Ideal Saturation Flow Rate and Geometric Adjustment Factors at Urban Signalized Intersection)

  • 오영태;심대영
    • 대한교통학회지
    • /
    • 제10권2호
    • /
    • pp.5-24
    • /
    • 1992
  • This research presets the method of determining basic capacity of signalized intersection using the concept of ideal saturation flow rate. Vehicle discharge rates during green time were collected and studied as part of the preparation of Korean Highway Capacity Manual. From the result of this study the ideal saturation flow rate and saturation queue position were determined. In addition, based on the ideal saturation flow rate two geometric adjustment factors(lane width and grade adjustment factors) were studied. The results were presented in this paper.

  • PDF

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.