• Title/Summary/Keyword: Geometric Distance

Search Result 399, Processing Time 0.029 seconds

Effects of Geometry of Anti-Vortex Holes on Film-Cooling Effectiveness (반와류 홀의 형상 변화가 막냉각 효율에 미치는 영향)

  • Kim, Jun-Hee;Kim, Sun-Min;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.12-23
    • /
    • 2014
  • A parametric study on anti-vortex holes for turbine blade cooling was investigated numerically. Three-dimensional Reynolds-averaged Navier-Stokes equations and shear stress transport turbulence model were used for analysis of anti-vortex film cooling. Validation of numerical results was carried out comparing with experimental data. The cooling performance of anti-vortex holes was assessed by two geometric variables, the ratio of diameters of holes and the lateral distances between the primary hole and anti-vortex hole at blowing ratios of 0.5 and 1.0. The results showed that the spatially-averaged film-cooling effectiveness increases as the ratio of the diameters increases and the distance between the primary hole and anti-vortex hole decreases.

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

A Study on Icongraphics and Minimalism in Design Expression (미니멀리즘적 디자인 표현과 아이콘그래픽스에 대한 고찰)

  • Chung, Jin Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.105-116
    • /
    • 2012
  • Minimalism combines the adjective 'minimal' and the suffix 'ism', and was first coined in the 1960s. Minimalism draws on the belief that when the use of artistic skills and adaptation is minimized and only the essentials or core is expressed, the discrepancy or distance between reality and art can be kept to a minimum; and thus, true reality can be achieved. To realize minimalism, artists creating paintings, sculptures and other forms of visual art eliminate unnecessary elements and strip objects to its essentials. And hence, most minimalist artwork used minimum amount of color and focused on expressing the geometric essence of objects. Such simplistic styles of minimalism can be seen today in various designs. Apple's iPod design and other product designs as well as graphic designs are just few of the examples. Drawing on the spirit of minimalism, Icongraphics pursues beauty and pleasure in the minimal use of color and form. And what lies beneath Icongraphics' artistic style is its pursuit of simplistic essentials, sending a strong message to the digitalized and complex lives of modern people.

CIRCLE APPROXIMATION BY QUARTIC G2 SPLINE USING ALTERNATION OF ERROR FUNCTION

  • Kim, Soo Won;Ahn, Young Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • In this paper we present a method of circular arc approximation by quartic B$\acute{e}$zier curve. Our quartic approximation method has a smaller error than previous quartic approximation methods due to the alternation of the error function of our quartic approximation. Our method yields a closed form of error so that subdivision algorithm is available, and curvature-continuous quartic spline under the subdivision of circular arc with equal-length until error is less than tolerance. We illustrate our method by some numerical examples.

Elemental image resizing and the analysis of the reconstructed three dimensional image in the integral imaging system (집적결상법에서 기본영상의 크기 변환에 따른 3차원 재생영상의 특성 분석)

  • Ser, Jang-Il;Shin, Seung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.225-234
    • /
    • 2005
  • In the integral imaging system for 3D display, the elemental image size is closely related to the several variables, such as the size of elemental lens, the distance between elemental lens and elemental image, etc., on the pick up system. We have analyzed the geometric relation between the variables. In addition, we have investigated the integrated image variation for the individual and whole conversion of the size of the elemental images, different from in pick up process, and presented experimental results.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong;Kim Nam-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

On-road Vehicle Tracking using Laser Scanner with Multiple Hypothesis Assumption

  • Ryu, Kyung-Jin;Park, Seong-Keun;Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • Active safety vehicle devices are getting more attention recently. To prevent traffic accidents, the environment in front and even around the vehicle must be checked and monitored. In the present applications, mainly camera and radar based systems are used as sensing devices. Laser scanner, one of the sensing devices, has the advantage of obtaining accurate measurement of the distance and the geometric information about the objects in the field of view of the laser scanner. However, there is a problem that detecting object occluded by a foreground one is difficult. In this paper, criterions are proposed to manage this problem. Simulation is conducted by vehicle mounted the laser scanner and multiple-hypothesis algorithm tracks the candidate objects. We compare the running times as multi-hypothesis algorithm parameter varies.