The Tertiary $Ch{\check{o}}ngja$ basin is located in the southeastern coastal area of the Korean Peninsula. It is a lozenge shaped fault-bounded basin with circa $5{\times}5km$ areal extent, isolated from other Tertiary basins by the Cretaceous Ulsan Formation in-between. The northwestern boundary of the basin is a domino/listric type normal fault trending $N30^{\circ}E$, whereas its southwestern boundary is a dextral strike-slip fault (trending $N20^{\circ}W$) with a lateral offset of more than 1 km. The basin is bounded by the East Sea on the eastern margin. Basin-fills consist of extrusive volcanic rock (Tangsa Andesites) of Early Miocene (16~22 Ma in radiometric age), unconsolidated fluviatile conglomerate (Kangdong Formation) and shallow brackish-water sandstone ($Sinhy{\check{o}}n$ Formation). The latter yields abundant Vicarya-Anadara molluscan fossils of early Middle Miocene age. The Tertiary strata become younger toward the northwestern boundary-fault of the basin, showing a zonal distribution pattern parallel to the fault: the younger sedimentary formations occupy a narrow zone of 2 km width along the northwestern boundary-fault, whereas the older Tangsa Andesites underlie them unconformably in the eastern and southeastern portions of the basin. The strata in the basin, including the Tangsa Andesites, are tilted (about $20^{\circ}$) toward the northwestern boundary-fault Sedimentary strata thicken toward the boundary-fault, forming a wedge shaped half-graben structure. A number of small-scale syndepositional normal growth faults and graben structures are observed in the sedimentary strata. These extensional structures have the same trend as the normal northwestern boundary-fault which we interpret as a pull-apart detachment fault. These characteristics imply persistent extension during the basin evolution, caused by a NW-SE directed tensional force. The $Ch{\check{o}}ngja$ basin is, thus, a kind of syndepositional tectonic basin evolved in a strike-slip (pull-apart) regime. The latter was caused by a dextral simple shear associated with the NNW-SSE opening of the East Sea. In view of the fact that the normal growth faults do not cut through the uppermost portion of the youngest $Sinhy{\check{o}}n$ Formation, it is inferred that the tensional force came to be inactive in the early Middle Miocene. This is coincident in timing with the termination of the East Sea opening (15 Ma).
The Kunang cave paleolithic site is located at Tanyang [$N37^{\circ}2'$, $128^{\circ}21'E$], Chungbuk Province, which is in the Central part of the Korean peninsula. The cave is developed at 312 amsl in a karstic mountainous area. The South Han River flows across this region and other caves can also be found near the river. The site was discovered in 1986 and excavated 3 times by the Chungbuk National University Museum until now. The cave was wellpreserved from modem human activities until the first discovery. The full length of the cave is estimated to be ca. 140 m. However, a spacious part up to 11 m from the entrance has been excavated. Eight lithological units are divided over the vertical profile at a depth of 5 m. Each unit is deposited in ascending order as follow: mud layer (Unit 9), lower complex (Unit 8) which is composed of angular blocks and fragments with a muddy matrix, lower travertine layer (Unit 7; flowstone), middle complex (Unit 6; cultural layer) which is composed of fragments with a muddy matrix, middle travertine layer (Unit 5; flowstone), yellowish muddy layer (Unit 4), upper complex (Unit 3; cultural layer) which has a similar composition to Unit 8. the upper travertine layer (Unit 2; flowstone), and finally surface soil layer (Unit 1). The most abundant vestiges in the cultural layers are the animal bones. They are small fractured pieces and mostly less than 3 cm in length. About 3,800 bone pieces from 25 animal species have been collected so far, 90 percent of them belonging to young deers. Previous archaeological study of these bone pieces shows thatprehistoric people occupied the cavenot for permanent dwelling but for temporary shelter during their seasonal hunting activity. More extensive studies of these bones together with pollen analysis are in progress to reconstruct the paleoenvironment of this cave. Only a single date (12,500 BP) obtained from a U-Th measurement of the upper travertine layer was previously available. In spite of the importance of the cave stratigraphy, there was no detail chronological investigation to establish the depositional process of the cultural layers and to understand the periodic structure of the cave strata, alternating travertine floor and complex layers. We have measured five 14C age dating (38900+/-1000, 36400+/-900, 40600+/-1600, more than 51000 and 52000 14C BP) using Seoul National University 14C AMS facility, conducted systematic process of the collagen extraction from bone fragments samples. From the result, we estimate that sedimentation rate of the cave earth is constant, and that the travertine layers, Unit 2 and Unit 3, was formed during MIS 5a(ca. 80 kBP) and MIS 5c (ca. 100 kBP) respectively. The Kunang Cave site is located at Yochonli of the region of Danyang in the mid-eastern part of Korea. This region is compased of limestones in which many caves were found and the Nam-han river flows meanderingly. The excavations were carried out three times in 1986, 1988, and 1998.
In the Hapcheon area, hypersthene-bearing monzonite (mangerite) and syenite are recognized. The main minerals of syenite are alkali feldspar, plagioclase, amphibole, biotite, and quartz. Anhedral hornblende and biotite are interstitial between feldspar and quartz, indicating that the hydrous minerals were crystallized later on. Based on petrochemical studies of major elements, syenite is alkaline series, metaluminous, and I-type. The variation patterns in the trace and rare earth elements of mangerite and syenite show the features of subduction-related igneous rock such as depletion of HFSE, relative enrichment in LILE to LREE, and negative Nb-P-Ti anomalies. Based on the experimental data and petrographic characteristics of the syenite, Hapcheon syenitic magma is considered to be formed by partial melting in a dry system. SHRIMP U-Pb zircon data yield the Triassic age as $227.4{\pm}1.4Ma$ in mangerite, $215.3{\pm}1.2Ma$ in syenite, and $217.9{\pm}2.6Ma$ in coarse-grained syenite, respectively. The mangerite age is similar to those of post-collisional plutonic rocks in Hongseong (226~233 Ma), Yangpyeong (227~231 Ma), and Odaesan (231~234 Ma) areas in the Gyeonggi Massif. Syenites were intruded after about 10 Ma. The features seen in the mangereite and syenite rocks can be explained by models such as the continental collision and slab break-off and the lithosphere thinning and asthenosphere upwelling model.
The properties of fracture system in Precambrian Jangbong schist and Mesozoic granites from Seokmo-do, Ganghwa-gun were investigated and analyzed. Most of the fractures measured at outcrops are nearly vertical or steeply dipping. Orientations of fracture sets in terms of frequency order are as follows: Set $1:N2^{\circ}E/77^{\circ}SE$, Set $2:N17^{\circ}E/84^{\circ}NW$, Set $3:N26^{\circ}E/64^{\circ}SE$, Set $4:N86^{\circ}W/82^{\circ}SW$, Set $5:N80^{\circ}W/77^{\circ}NE$, Set $6:N60^{\circ}W/85^{\circ}SW$, Set $7:N73^{\circ}E/87^{\circ}NW$, Set $8:N82^{\circ}W/53^{\circ}NE$, Set $9:N23^{\circ}W/86^{\circ}SW$, Set 10: $N39^{\circ}W/61^{\circ}NE$. Especially, the rose diagram of fracture strikes(N:240) indicates that there are two dorminant directions of N-S~NNE and WNW. These distribution pattern of fractures from Seokmo-do correponds with those of major lineaments from South Korea suggested in previous study. Meanwhile, the scaling properties on the length distribution of fracture populations have been investigated. First, fracture sets from Precambrian Jangbong schist and Mesozoic granites(north and south rock body) has been classified into five groups(group I~V) based on strike and frequency. Then, the distribution chart generalized the individual length-cumulative frequency diagram for above five groups were made. From the related chart, five subpopulations(group I~V) that closely follow a power-law length distribution show a wide range in exponents(-0.79~-1.53). These relative differences in exponent among five groups emphasizes the importance of orientation effect. From the related chart, the diagram of group III occupies an upper region among five groups. Finally, the distribution chart showing the chracteristics of the length frequency distribution for each rock body were made. From the related chart, the diagram of each rock body shows an order of porphyritic biotite granite < hornblende granodiorite < medium-grained biotite granite(south rock body) < medium-grained biotite granite(north rock body) < Precambrian Jangbong schist. From the related chart, the diagram of more older rock body in the formation age tends to occupy an upper region. Especially, the diagram of Precambrian Jangbong schist occupies an upper region compared with the diagrams of Mesozoic granites. These distributional chracteristics suggests that coexistence of new fracture initiation and growing of existing fractures corresponding with stress field acted since the formation of rock body.
The Precambrian quartzite and calc-schist layers experienced multi-1310ing events are distributed along the two kinds of U-shaped 1310 (Fold I and II) with $N10^{\circ}E-directed$ fo1d axis in Wollong-myeon, Gwangtan-myeon, Jori-myeon of Paju city, the northeastern part of Gyeonggido. Occurrence of 10 layers of quartzite and 4 layers of calc-schist is not clear whether quartzite and schist layers were deposited sequentially each other or one to two layers of quartzite and schist were distributed repeatedly by isoclinal folding and thrusting, because of lack of sedimentary structures. In this paper, we tried to clarify the correlative relationship among the quartzite beds which are distributed along the U-shaped folds using geochemical tools such as rare earth element (REE) patterns and Nd isotope ratio. Quartzites have characteristics of LREE-flattened, HREE- slightly depleted patterns. They also show Ce negative anomaly whereas there are no Eu anomalies. As a result, quartzite beds occurred along the bilateral sides of fold axis show very similar REE patterns from outer side to inner side of 1314. The Nd model age of quartzite layers shows a trend that the inner part of fold is younger than the outer part of it. Such geochemical characteristics suggest that bilateral quartzite beds occurred along the fold axis were derived from the cogenetic source materials. The REE patterns and trace element geochemistry of mica schist intercalated within quartzite indicate that the quartzite and mica schist may be derived from different source materials. Our results suggest that REE and Nd isotope geochemistries may be very useful in clarifying the relationship of sedimentary deposits which do not show stratigraphical and structural connections in the field.
The Shinri area near the Yedang Lake, the eastern part of the Hongseong area in SW Gyeonggi Massif, consists of the Neoproterozoic Duckjeongri granodiorite-tonalite, mylonitized amphibole-bearing orthogneiss and impure marble with lens-shaped garnet-bearing metabasites. In this paper, we report mineralogical and geochemical data of Neoproterozoic lens-shaped garnet-bearing metabasites within marble of the Shinri area. The $SiO_2$ contents of garnet-bearing metabasites in marble vary between ~46.98 and 51.17 wt%, and the $Na_2O$ + $K_2O$ contents fall between ~1.95 and 2.85 wt%, similar to the tholeiitic sub-alkaline basaltic rocks. In the Zr/Y vs. Zr diagram, garnet-bearing metabasites also plot in the subalkaline basaltic rocks. The chondrite-normalized REE patterns for Shinri garnet-bearing metabasites show relatively flat patterns to that of chondrite. They show slight LREE-enriched and depleted patterns. The major and trace element data from lens-shaped garnet-bearing metabasites in marble of the Shinri area suggest that these rocks were formed in within plate. In contrast, previous major and trace element data of high pressure type garnet-bearing metabasites from the mafic-ultramafic complex in the Baekdong and Bibong areas suggest that these rocks were formed in a nascent arc to backarc spreading center within subduction zone setting. Based on mineral assemblage and mineral chemistry, P-T estimates for Shinri garnet-bearing metabasites are 9.6-12.7 kb, $695-840^{\circ}C$ for inclusions in the core, and 9.6-13.6 kb, $630-755^{\circ}C$ for those in the rim. These P-T estimates are distinct from those of the Baekdong and Bibong garnet-bearing metabasites with isothermal decompressional retrograde P-T path. In addition to Triassic tectonic activity previously reported in the Shinri area of Hongseong, the details of metamorphic history such as protolith age and Neo-Proterozoic metamorphic episode need to be solved.
Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.
Kim, Han-Joon;Jeong, Gap-Sik;Yi, Bo-Yeon;Jo, Churl-Hyun;Lee, Kwang-Bae;Lee, Jun-Ho;Jou, Hyeong-Tae;Lee, Gwang-Hoon
Geophysics and Geophysical Exploration
/
v.13
no.4
/
pp.357-363
/
2010
In this study, we investigated the geologic structure of the basement and overlying sediments of the construction site of the dinosaur egg fossil museum in Hwasung, Gyeonggi Province through refraction seismology, drilling, and downward seismic velocity measurements in the drill holes. The construction site ($350{\times}750\;m^2$) is located in the reclaimed area south of Sihwa Lake, Gojeong-ri. About 6,950 m of seismic refraction data consisting of 11 lines were acquired using a sledge hammer source. Drilling to the basement was performed at five sites. Sediment samples from drilling were analysed for grain-size distribution and age dating. At two drill holes, seismic velocity was measured with depth using a hammer as a seismic source. The geological structure of the study area consists of, from top to bottom, a tidal flat layer (5 ~ 12 m thick), a weathered soil layer (2 ~ 8 m thick), and the basement. The basement is interpreted as Cretaceous sedimentary rocks that tend to be shallow eastward. The volume of the tidal flat sediments and weathered soil in the study area is estimated as $1.4{\times}10^6\;m^3$, weighing $3.5{\times}10^6$ tons. The rate of sea level rise since 8,000 yrs BP is estimated to be 0.1 ~ 0.15 cm/yr.
Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.12
/
pp.425-435
/
2018
The purpose of this study is to investigate the cultural value as well as business value of Juk-Bang-Ryeum(fishing instrument made by bamboo weir) by the investigation of remains in Gyeongnam Sacheon area and reviewing various historical literatures. The research will contribute to make back data necessary for the registration of World Heritage(UNESCO) and Globally Important Agricultural Heritage Systems(FAO). Fisheries, along with agriculture, have been great significance in human history. In particular, the Fisheries has been considered very important industry due to the geopolitical characteristics of our country surrounded by the sea. We can imagine may types of fishing practices and instruments at the agricultural age. Nonetheless, there are a few fishery heritages such as collecting and hunting tools that remains today. Fortunately, there are many Juk-Bang-Ryeum which is actually operate now from the past 500 years ago at the The Sacheon and Namhae areas. We could found some literature records about it in the historical ancient literatures. We could also infer that Juk-Bang-Ryeum was an important fishery resource of the country for a long time. It was built on the basis of scientific principles to capture fishes using the rapid tide of the natural geological straits, and it prove the wisdom of our ancestors. We also could found some unique cultural heritages that was important to the local community. Naturally, it has been managed as an important asset for the residents. In addition to such historical and humanistic values, it also has business and educational value. It can be useful to understand scientific fishery principles as well as fishery experience field. It has business value as an important tourism resource in the region in connection with historical relics and geological environment resources. In conclusion, it is a valuable asset to be handed down as a valuable cultural heritage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.