Browse > Article

Petrochemistry of Garnet-bearing Metabasite in Marble at Shinri area in Hongseong and its Tectonic Implication  

Kim, Sung-Won (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
Koh, Hee-Jae (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.19, no.3, 2010 , pp. 209-225 More about this Journal
Abstract
The Shinri area near the Yedang Lake, the eastern part of the Hongseong area in SW Gyeonggi Massif, consists of the Neoproterozoic Duckjeongri granodiorite-tonalite, mylonitized amphibole-bearing orthogneiss and impure marble with lens-shaped garnet-bearing metabasites. In this paper, we report mineralogical and geochemical data of Neoproterozoic lens-shaped garnet-bearing metabasites within marble of the Shinri area. The $SiO_2$ contents of garnet-bearing metabasites in marble vary between ~46.98 and 51.17 wt%, and the $Na_2O$ + $K_2O$ contents fall between ~1.95 and 2.85 wt%, similar to the tholeiitic sub-alkaline basaltic rocks. In the Zr/Y vs. Zr diagram, garnet-bearing metabasites also plot in the subalkaline basaltic rocks. The chondrite-normalized REE patterns for Shinri garnet-bearing metabasites show relatively flat patterns to that of chondrite. They show slight LREE-enriched and depleted patterns. The major and trace element data from lens-shaped garnet-bearing metabasites in marble of the Shinri area suggest that these rocks were formed in within plate. In contrast, previous major and trace element data of high pressure type garnet-bearing metabasites from the mafic-ultramafic complex in the Baekdong and Bibong areas suggest that these rocks were formed in a nascent arc to backarc spreading center within subduction zone setting. Based on mineral assemblage and mineral chemistry, P-T estimates for Shinri garnet-bearing metabasites are 9.6-12.7 kb, $695-840^{\circ}C$ for inclusions in the core, and 9.6-13.6 kb, $630-755^{\circ}C$ for those in the rim. These P-T estimates are distinct from those of the Baekdong and Bibong garnet-bearing metabasites with isothermal decompressional retrograde P-T path. In addition to Triassic tectonic activity previously reported in the Shinri area of Hongseong, the details of metamorphic history such as protolith age and Neo-Proterozoic metamorphic episode need to be solved.
Keywords
Gyeonggi Massif; Shinri area; Neoproterozoic; lens-shaped garnet-bearing metabasites; within plate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.-C., 2009, Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth Planet. Sci. Lett., 279, 340-349.   DOI   ScienceOn
2 Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu Collision Belt in China. J. Geol., 113, 226- 232.   DOI   ScienceOn
3 Williams, I.S., Cho, D.-L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256.   DOI   ScienceOn
4 Winchester, J.A. and Floyd, P.A., 1976, Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet. Sci. Lett., 28, 459-469.   DOI   ScienceOn
5 Zhai, M. and Guo, J., 2005, Discovery of eclogites and extension of Sulu UHP belt in South Korea. Mitt. Osterr. Miner. Ges., 150, 172.
6 Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Pub., 313-345.
7 Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., Lavran'eva, I.V., Gerasimov, V.Y., Fed'Kin, V.V., Kitsul, V.I., Karasakov, L.P. and Berdnikov, N.V., 1985, Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J. Metamorph. Geol., 3, 265-310.   DOI
8 Seo, J., Choi, S.-G., Oh, C.W., Kim, S.W. and Song, S.H., 2005, Genetic implications of two different ultramafic rocks from Hongseong area in the southwestern Gyeonggi Block, South Korea. Gondwana Res., 8, 539-552.   DOI   ScienceOn
9 Shervais, J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59, 101-118.   DOI   ScienceOn
10 Song, S.H. Choi, S.G. and Woo, J.G., 1997, Genetic implications of ultramafic rocks from the Bibong area in the Kyeonggi gneiss complex. Econ. Environ. Geol., 30, 477- 491.
11 Oh, C.W., Choi, S.-G., Seo, J., Rajesh, V.J., Lee, J.H., Zhai, M. and Peng, P., 2009, Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Res., 16, 272-284..   DOI   ScienceOn
12 Oh, C.W., Choi, S.-G., Song, S.H. and Kim, S.W., 2004, Metamorphic evolution of the Baekdong metabasite in the Hongseong area, South Korea and its relationship with the Sulu collision belt of China. Gondwana Res., 7, 809- 816   DOI   ScienceOn
13 Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B., 1989, A classification of igneous rocks and glossary of terms. Blackwell, Oxford.
14 Liou, J.J.. Zhang, R.Y., Earnst, W.G., Rumble, D.III. and Maruyama, S., 1998, High pressure minerals from deeply subducted metamorphic rocks. Rev. Mineral., 37, 33-96.
15 Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., 56, 207-218.   DOI   ScienceOn
16 Kim, S.W., Oh, C.W., Williams, I.S., Rubbato, D., Ryu, I.- C., Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Block, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377.   DOI   ScienceOn
17 Kim, S.W., Santosh, M. and Kwon, S., under review, A Neoproterozoic ophiolite suite from the Hongseong suture, South Korea: Geochemistry, zircon SHRIMP geochronology and implications on the tectonics of East Asia. Gondwana Res.
18 Pearce, J.A. and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 12, 290-330.
19 Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69, 33-47.
20 Laird, J. and Albee, A.L., 1981, Pressure-temperature and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. Am. J. Sci., 281, 127-175.   DOI
21 Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W., 2008, SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precam. Res., 162, 475-497.   DOI   ScienceOn
22 Kohn, M.J. and Spear, F.S., 1990, Two new geobarometers for garnet amphibolites, with applications to southern Vermont. Am. Mineral., 75, 89-96.
23 Choi, S.G., Song, S.H. and Choi, S., 1998, Genetic implications of the ultrmafic rocks from the Hongseong area, western part of Chungnam. Abstract of Kore. Soc., Eon. Environ. Geol., p46.
24 Kretz, R., 1983, Symbols for rock-forming minerals. Am. Mineral., 68, 277-279
25 Graham, C.M. and Powell, R., 1984. A garnet-hornblende geothermometer: calibration, testing and application to the Pelona Schist, southern California. J. Metamorph. Geol., 2, 13-21.   DOI
26 Green, D.H. and Ringwood, A.E., 1967, An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. Cosmochim. Acta, 31, 767-833.   DOI   ScienceOn
27 Irvine, T.N. and Baragar, W.R., 1971, CA guide to the chemical classification of the common igneous rocks. Canad. J. Earth Sci., 8, 523-548.   DOI
28 이종혁, 김성수, 1963, 1: 50,000 홍성 도폭 지질조사보고서. 한국지질자원연구원, 33p.
29 송석환, 송윤섭, 2001, 충남 서부 신곡 지역에 분포하는 초염기성암의 광물 조성 및 지구화학. 자원환경지질, 34, 395-415.
30 송석환, 최선규, 오창환, 서지은, 최성호, 2004, 충남 홍성 및 광천지역 초염기성암의 암석 및 지구화학. 자원환경지질, 37, 477-497.   과학기술학회마을
31 엄상호, 이민성, 1963, 1: 50,000 대흥 도폭 지질조사보고서. 한국지질자원연구원, 18p.
32 기원서 외, 2009, 한반도/동북아 중생대 지각진화연구, GP2009-012-01-2009, 한국지질자원연구원.