• 제목/요약/키워드: GeoOntology

검색결과 19건 처리시간 0.019초

한국의 지리정보학과 지리정보 정책: Web GIS와 국가 GIS를 중심으로 (GIScience Studies and Policies in Korea: Focus on Web GIS and National GIS)

  • 구자용;황철수;최진무
    • 대한지리학회지
    • /
    • 제47권4호
    • /
    • pp.592-605
    • /
    • 2012
  • 본고에서는 한국의 지리학 관련 논문들에 대해 가장 급속하게 발전하고 있는 웹 GIS와 국가 GIS 서비스라는 두 분야에 대한 연구동향 및 방향을 논의하였다. 한국의 웹 GIS는 현재 모바일 GIS로 진화하고 있는데, 휴대용 하드웨어, 무선 인터넷, GIS 수신기를 통합적으로 필요로 한다. 따라서 모바일 GIS의 새로운 방향은 스마트 폰을 이용하는 것으로 최근 다양한 모바일 엡과 웹이 개발되고 있다. 웹 2.0 기술과 함께 폭발적으로 증가한 정보를 관리할 수 있도록 한국 정보는 인문지리정보시스템(HOGIS)을 개발하고 있으며, 여기서 온톨로지를 이용해 국토공간에 대한 시멘틱 검색이 가능하도록 개발하고 있다. 다른 한편으로 정부 차원에서 1995년부터 5년간 4차에 걸쳐 국가 GIS 프로젝트를 수행하고 있다. 현재 4차 국가 GIS를 수행하고 있으며, 공간정보를 미래의 성장 동력으로 선정하여, 국가 녹색 공간정보 사회를 향해 프로젝트를 진행하고 있다.

  • PDF

마이크로 블로그기반의 공간 지식 추출 기법연구 (A Technique for Extracting GeoSemantic Knowledge from Micro-blog)

  • 하수욱;남광우;류근호
    • Spatial Information Research
    • /
    • 제20권2호
    • /
    • pp.129-136
    • /
    • 2012
  • 최근 ISO/TC211, OGC, INSPIRE 등 국제기구들을 중심으로 시맨틱 기술을 활용한 공간정보의 공유 노력이 진행되고 있다. 또한 스마트폰의 대중화와 소셜 네트워킹 서비스의 활성화로 인해 온라인 소셜 커뮤니티에서 이슈를 추출하기 위한 연구들이 이루어지고 있다. 그러나 응용 수준에서 가용한 공간정보 온톨로지는 부족한 실정이며, 소셜 네트워크 서비스에서의 공간정보 추출 역시 텍스트 마이닝을 통한 지오코딩 부분에 집중되어 있다. 따라서 소셜 미디어 정보에서 공간 현상을 추출하여 시맨틱 공간 지식으로 변환하기 위한 방법은 매우 유용하게 활용될 수 있다. 또한 공간 현상을 단순한 빈발 키워드가 아닌 연관 이슈의 형태로 사용자에게 제공함으로써 공간상에 발생하는 이슈에 대한 이해도를 향상 시킬 수 있을 것이다. 따라서 본 논문에서는 소셜 미디어 서비스의 하나인 마이크로 블로그를 기반으로 데이터를 수집하여 데이터 마이닝 기술을 접목하여 연관 이슈를 추출하고, 이를 시공간 지식으로 변환하기 위한 공간 이슈 온톨로지 모델을 제안하였다. 이를 통해 향후 관련 시스템의 개발을 위한 참조모델 및 공간 온톨로지 구축을 위한 모델로써 유용하게 사용될 수 있을 것으로 기대된다.

RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법 (Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq)

  • 김차영
    • 인터넷정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.47-53
    • /
    • 2017
  • 고처리 시퀀싱과 빅데이터 및 크라우드 컴퓨팅에 혁신이 일어나면서, RNA 시퀀싱도 획기적인 변화가 일어, RNAseq가 기존의 DNA 마이크로어레이를 대체하여, 빅-데이터를 형성하고 있다. 현재, RANseq 이용한 유전자 조절망(GRN) 까지 연구가 활성화 되고 있는데, 그 중 한 분야가 GRN의 기본 요소인 특징 유전자를 빅-데이터에서도 구별하고 기존에 알려진 것 외에 새로운 역할을 찾는 것이다. 그러나, 이러한 연구 방향에 부합하는 빅-데이터를 처리할 수 있는 컴퓨테이션 방법이 아직까지 매우 부족하다. 따라서 본 논문에서는 RNAseq 빅-데이터를 처리할 수 있도록 기존의 SVM-RFE알고리즘을 밀집도-의존 정규화에 병합하여, NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 데이터에 개선된 알고리즘을 적용하고 해당 알고리즘에 의해 나온 결과의 성능을 평가한다.

SSNO 기반 시공간 시맨틱 센서 웹 (Spatio-Temporal Semantic Sensor Web based on SSNO)

  • 신인수;김수정;김정준;한기준
    • Spatial Information Research
    • /
    • 제22권5호
    • /
    • pp.9-18
    • /
    • 2014
  • 유비쿼터스 컴퓨팅 환경이 발전함에 따라 GeoSensor와 같이 GPS 기능을 보유한 센서로부터 생성된 시공간 센서 데이터 활용이 증가하고 있으며, 시공간 센서 데이터를 사용해 사용자에게 다양한 서비스를 효율적으로 제공해주기 위한 시맨틱 센서 웹이 연구되고 있다. 특히, W3C에서는 OGC의 SWE(Sensor Web Enablement)와 같은 센서 관련 표준들을 활용하고, 센서 데이터를 온톨로지로 표현할 수 있는 SSNO(Semantic Sensor Network Ontology)를 개발하였다. 그러나 이러한 연구들은 비시공간 센서 데이터에 대한 질의 처리는 가능하지만 시간과 공간 정보를 포함하는 시공간 센서 데이터를 효율적으로 처리하기 어렵다는 문제점이 존재한다. 따라서, 본 논문에서는 OGC의 "OpenGIS Simple Feature Specification for SQL"에서 제시한 공간 데이터 타입과 공간 연산자를 확장하여 시공간 데이터 타입과 시공간 연산자를 지원하는 SSNO 기반의 시공간 시맨틱 센서 웹을 개발하였다. SSNO 기반의 시공간 시맨틱 센서 웹은 시공간 센서 데이터인 SensorML(Sensor Model Language)과 O&M(Observations and Measurements) 스키마를 분석하여 SSNO 문서로 변환 및 저장하고, 시공간 연산자와 시공간 추론 규칙을 적용하여 효율적인 질의 처리를 수행한다. 마지막으로, 이러한 SSNO 기반의 시공간 시맨틱 센서 웹을 가상 시나리오에 적용해 봄으로써 본 시스템의 효용성을 검증하였다.

Meta-analysis of Gene Expression Data Identifies Causal Genes for Prostate Cancer

  • Wang, Xiang-Yang;Hao, Jian-Wei;Zhou, Rui-Jin;Zhang, Xiang-Sheng;Yan, Tian-Zhong;Ding, De-Gang;Shan, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.457-461
    • /
    • 2013
  • Prostate cancer is a leading cause of death in male populations across the globe. With the advent of gene expression arrays, many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biologic mechanisms of prostate cancer, we conducted a meta-analysis of two studies on prostate cancer. Eight key genes were identified to be differentially expressed with progression. After gene co-expression analysis based on data from the GEO database, we obtained a co-expressed gene list which included 725 genes. Gene Ontology analysis revealed that these genes are involved in actin filament-based processes, locomotion and cell morphogenesis. Further analysis of the gene list should provide important clues for developing new prognostic markers and therapeutic targets.

Identifying Differentially Expressed Genes and Screening Small Molecule Drugs for Lapatinib-resistance of Breast Cancer by a Bioinformatics Strategy

  • Zhuo, Wen-Lei;Zhang, Liang;Xie, Qi-Chao;Zhu, Bo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10847-10853
    • /
    • 2015
  • Background: Lapatinib, a dual tyrosine kinase inhibitor that interrupts the epidermal growth factor receptor (EGFR) and HER2/neu pathways, has been indicated to have significant efficacy in treating HER2-positive breast cancer. However, acquired drug resistance has become a very serious clinical problem that hampers the use of this agent. In this study, we aimed to screen small molecule drugs that might reverse lapatinib-resistance of breast cancer by exploring differentially expressed genes (DEGs) via a bioinformatics method. Materials and Methods: We downloaded the gene expression profile of BT474-J4 (acquired lapatinib-resistant) and BT474 (lapatinib-sensitive) cell lines from the Gene Expression Omnibus (GEO) database and selected differentially expressed genes (DEGs) using dChip software. Then, gene ontology and pathway enrichment analyses were performed with the DAVID database. Finally, a connectivity map was utilized for predicting potential chemicals that reverse lapatinib-resistance. Results: A total of 1, 657 DEGs were obtained. These DEGs were enriched in 10 pathways, including cell cycling, regulation of actin cytoskeleton and focal adhesion associate examples. In addition, several small molecules were screened as the potential therapeutic agents capable of overcoming lapatinib-resistance. Conclusions: The results of our analysis provided a novel strategy for investigating the mechanism of lapatinib-resistance and identifying potential small molecule drugs for breast cancer treatment.

하천공간정보의 온톨로지 구축방안 연구 (Construction of Ontology for River GeoSpatial Information)

  • 신형진;신승희;황의호;채효석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.627-627
    • /
    • 2015
  • 기존 물관련 시스템들은 독자적인 DB 구조를 가지고 있고 검색 서비스는 자체 시스템의 DB를 직접 접근하여 사용자에게 결과를 제시하는 형식이다. 이러한 서비스의 단점은 사용자가 개별 시스템의 서비스에 대한 지식이 없으면 접근하기 어렵다는 점이다. 개별 시스템의 개별 서비스의 개념을 벗어나기 위하여 물관련 시스템에 있는 하천공간자료 검색 정보를 카탈로그 서버에 등록하고, 카탈로그 서버에 등록된 검색정보를 사용자가 검색하는 방식을 적용하고자 한다. 카탈로그 서버에 자료에 대한 정보를 등록할 때 자료의 정보를 어떻게 기술할 것인가의 문제가 발생한다. 개별 서버마다 등록하게 된다면 용어 및 문화에 의한 차이로 같은 개념을 다른 용어로 등록하게 되는 혼란이 발생할 소지가 있다. 예를 들어 강우자료에 대하여 "강우", "Precipitation", "Railfall", "비" 등으로 등록할 소지가 있다. 이러면 실제 자료가 존재하는 데도 등록 방법에 따라 자료의 검색이 어려워진다. 이러한 상황을 제어하기 위하여 검사어휘(Controlled Vocabulary)를 도입한다. 이는 포털의 운영자가 미리 용어의 개념과 용어의 분류체계를 설정하고 등록 자료의 검색어를 미리 설정하여 자료의 원천 소유자가 자료를 등록 시 검사어휘를 참고하여 등록하거나 또는 등록되지 않는 용어의 자료인 경우 이 용어를 포탈에 신규로 등록한다. 검색용어의 난립을 피하기 위하여 사용자의 신규등록은 포탈의 운영자가 어느 정도 제어할 필요가 있다. 검사어휘의 정립과 하천 관련된 분류체계는 하천공간정보 검색의 포탈을 위한 필수사항이다. 검사어휘의 정립의 주된 목적은 이질성의 극복이다. 이질성의 종류는 문법적 이질성, 데이터 형식과 구조 및 문맥적 이질성이 있다. 이 중에서 문맥적 이질성이 가장 넓고 어려운 문제이다. 단위는 분야마다 호칭이 다르고 채택하는 기준마다 다르다. 유사어는 전문용어라도 분야마다 다르다. 우리나라에서 서비스 인코딩시 국어와 영어를 어떻게 처리할 지에 대한 대책도 필요하다. 수문학의 시계열 자료를 다루는 CUAHSI/HIS의 온톨로지는 대 개념으로 물리학적, 화학적 및 생물학적인 분야로 분류하고 있다. 하천공간정보의 온톨로지 구축을 위해 데이터 분석 및 분류, 온톨로지 요소 설정, 온톨로지 데이터 테이블 작성, 클래스 생성 및 계층화, 클래스 계층화에 따른 속성 설정, 클래스에 적합한 개체 삽입, 논리 관계 확인 및 수정과 같은 과정으로 온톨로지 개발을 진행하고자 한다.

  • PDF

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.