• Title/Summary/Keyword: Geo-thermal

Search Result 93, Processing Time 0.027 seconds

A Study on the Energy Self-Sufficiency of KIER Zero Energy Solar House II (제로에너지 솔라하우스(KIER ZESH-II)의 에너지 자립도에 대한 연구)

  • Jeong, Seonyeong;Baek, Namchoon;Yoo, Changkyoon;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • The purpose of this study is on the thermal performance evaluation of KIER Zero Energy Solar House-II, called ZeSH-II which can be sustained with the support of a very few energy. This ZeSH-II was designed and constructed in the end of 2009 to develop for the goal of 70% self-sufficiency. Several key technologies like as the super insulation, high performance window, wast heat recovery system as well as solar power and thermal system and geo-source heat pump wear used for this ZeSH-II. The monitering of ZeSH-II was conducted for six months from November 2009 to April 2010. The monthly energy consumption was calculated based on the monitering results. As a result, the ZeSH-II shows that the energy self-sufficiency during six months(from oct. to apr.) is about 80% which is higher than that of the target.

  • PDF

Performance Evaluation of Open-Loop Ground Water Heat Pump system (개방형 지열히트펌프 시스템의 성능평가)

  • Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.9-14
    • /
    • 2006
  • Open loop or ground water heat pump systems are the oldest of ground-source systems. Standing column wells can be used as highly efficient ground heat exchanger in geo-thermal heat pump systems, where hydrological and geological conditions are suitable. These systems require some careful considerations for well design, ground water flow, heat exchanger selection etc This paper describes 9round water temperature variations, performances in heat ins and cool ing mode and the results of ground water analysis.

  • PDF

Thermal Properties of Granite from the Central Part of Korea (한국 중부 지역의 화강암 열물성)

  • Kim, Jongchan;Lee, Youngmin;Koo, Min-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.441-453
    • /
    • 2014
  • Thermal and physical properties were measured on 206 Jurassic granite samples obtained from three boreholes in the central part of Korea. Thermal conductivity(${\lambda}$), thermal diffusivity(${\alpha}$), and specific heat(Cp) were measured in a laboratory; the average values are ${\lambda}$=2.813 W/mK, ${\alpha}=1.296mm^2/sec$, and Cp=0.816 J/gK, respectively. In addition, porosity(${\phi}$), and dry and saturated density(${\rho}$) were measured in the laboratory; the average values are ${\phi}$=0.01, ${\rho}(dry)=2.662g/cm^3$ and ${\rho}(saturated)=2.67g/cm^3$, respectively. Thermal diffusivity of 10 granite samples were measured with increasing temperature from $25^{\circ}C$ to $200^{\circ}C$. In this study, we found that thermal diffusivity at $200^{\circ}C$ is about 30% lower than thermal diffusivity at $25^{\circ}C$. In correlation analysis, thermal conductivity increases with increasing thermal diffusivity. However, thermal conductivity does not show good correlation with porosity and density. Consequently, we know that thermal conductivity of granite would be more influenced by mineral composition than by porosity. We also derived ${\rho}=-2.393{\times}{\phi}+2.705$ from density and porosity data. XRD and XRF analysis were performed to investigate effects of mineral and chemical composition on thermal conductivity. From those results, we found that thermal conductivity increases with increasing quartz and $SiO_2$, and decreases with increasing albite and $Al_2O_3$. Regression analysis using those mineral and chemical composition were carried out ; we found $K=0.0294V_{Quartz}+1.93$ for quartz, $K=0.237W_{SiO_2}-14.09$ for $SiO_2$, and $K=0.053W_{SiO_2}-0.476W_{Al_2O_3}+6.52$ for $SiO_2$ and $Al_2O_3$. Specific gravities were measured on 10 granite samples in the laboratory. The measured specific gravity depends on chemical compositions of granite. Therefore, specific gravity can be estimated by the felsic-mafic index(F) that is calculated from chemical composition. The estimated specific gravity ranges from 2.643 to 2.658. The average relative error between measured and estimated specific gravities is 0.677%.

Error Identification and Compensation for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 오차규명 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • Methodology of volumetric error identification and compensation is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geo-metric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. A volumetric error compensation system based on IBM/PC is linked with a FANUC CNC controller to compensate for the identified volumetric error in machining workspace.

  • PDF

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

The Development of a Multi-sensor Payload for a Micro UAV and Generation of Ortho-images (마이크로 UAV 다중영상센서 페이로드개발과 정사영상제작)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1645-1653
    • /
    • 2014
  • In general, RGB, NIR, and thermal images are used for obtaining geospatial data. Such multiband images are collected via devices mounted on satellites or manned flights, but do not always meet users' expectations, due to issues associated with temporal resolution, costs, spatial resolution, and effects of clouds. We believe high-resolution, multiband images can be obtained at desired time points and intervals, by developing a payload suitable for a low-altitude, auto-piloted UAV. To achieve this, this study first established a low-cost, high-resolution multiband image collection system through developing a sensor and a payload, and collected geo-referencing data, as well as RGB, NIR and thermal images by using the system. We were able to obtain a 0.181m horizontal deviation and 0.203m vertical deviation, after analyzing the positional accuracy of points based on ortho mosaic images using the collected RGB images. Since this meets the required level of spatial accuracy that allows production of maps at a scale of 1:1,000~5,000 and also remote sensing over small areas, we successfully validated that the payload was highly utilizable.

Optical Sensor Support Structure for Geo-stationary Satellite (정지궤도 위성의 광학 센서 지지 구조물)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.8-13
    • /
    • 2010
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Especially when optical payload is accommodated, satellite structure usually adopts the optical bench consisting of composite material not only to support and secure but also to guarantee good pointing stability against extreme thermal environments. This paper deals with optical bench and support structure which shall be designed to minimize the loads transferred to optical payloads from satellite.

Mechanical Interface Design of Optical Pay loads in a GEO Multi-Functional Satellite (정지궤도 복합위성의 광학탑재체 기계접속설계)

  • Park, Jong-Seok;Kim, Chang-Ho;Jeon, Hyung-Yoll;Kim, Sung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • The COMS is a kind of geostationary multi-functional satellites with three different mission objectives. Two of them aim at earth observation and the COMS has two optical payloads according to those missions. The payloads are composed of a meteo imager and an ocean color imager, and their inherent characteristics require optimal interface design for their performance to be concurrently achieved. Therefore, various kinds of constraints are considered in their component accommodation on the COMS platform. This paper shows a general overview of the optical payload accommodation design and describes the design consideration to achieve the optimized performance from thermal and mechanical point of view.

  • PDF