• Title/Summary/Keyword: Geo-object Field

Search Result 11, Processing Time 0.017 seconds

Spatial relationship operations of the Satellite image for the Remote sensing based on an Object oriented data model (객체지향 데이터 모델에 기반 원격탐사를 위한 위성영상의 공간 관계 연산)

  • Shin, Un-Sseok;Lee, Jae-Bong;Kim, Hyung-Moo;Lee, Hong-Ro
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.251-256
    • /
    • 2004
  • This paper will show examples and methods of spatial relationship operations that extract spatial information from satellite images. Geographical information system phenomena of complex and variant real world can abstract and implement simple features. The abstract features classify geo_objects and geo_field. The geo_object and the geo_field can represent vector and raster respectively. The raster based satellite image can use remote sensing applications. This paper needs topology operations and geometric operations for extracting the remote sensing. The spatial information transforms the raster based image to the vector based object, and extract from the spatial information. The extracted information will contribute on the application of the remote sensing satellite images.

  • PDF

An Object Oriented Spatial Data Model Based on Geometric attributes and the Role of Spatial Relationships in Geo-objects and Geo-fields (지리-객체와 지리-필드에서 기하 속성과 공간관계 역할에 기반한 객체 지향 공간 데이터 모델)

  • Lee, Hong-Ro
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.516-572
    • /
    • 2001
  • Geographic Information System(CIS) deal with data which can potentially be useful for a wide range of applications. The information needed by each application can be vary, specially in resolution, detail level, application view, and representation style, as defined in the modeling phase of the geographic database design. To be able to deal with such diverse needs, GIS must offer features that allow multiple representation for each geographic entity of phenomenon. This paper addresses on the problem of formal definition of the objects and their relationships on the geographical information systems. The geographical data is divided into two main classes : geo-objects and geo-fields, which describe discrete and continuous representations of spatial reality. I studied the attributes and the relationship roles over geo-object and nongeo-object. Therefore, this paper contributed on the efficient design of geographical class hierarchy schema by means of formalizing attribute-domains of classes.

  • PDF

An Implementation of Flood Simulation in the Saemangeum Water Resources Management System using an Object-oriented Geographic Information System (객체-지향 지리정보시스템을 이용한 새만금 수자원 관리 시스템의 홍수방어 시뮬레이션 구현)

  • Lee, Hong-Lo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2003
  • This paper defines the prototype of the geographic-object field that links the geographic-object and the geographic-field using an object-oriented geographic information system, and then implements the flood simulation in the saemangeum water resources management system that manipulates the water quantity of saemangeum lake and the height of gate using the watershed-object field. This paper combines the natural phenomena with the artificial phenomena that occurs on the water resources of the saemangeum, and designs the object oriented class hierarchy that is composed of the total watershed-object field, and then presents the algorithm for flood control. To visualize the class hierarchy of the whole geographic-object field and the partial geographic-object field, I use the UML(Unified Modeling Language). Attributes and methods of each class can acquire the functional reusability and compatibility using the COM of the ZEUS and the Visual Basic 6.0 of Win32 APIs. By means of implementing the flood simulation in the Saemangeum water resources management system, finally, this paper contributes on the efficient management of water resources.

  • PDF

Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery (RapidEye 위성영상의 시계열 NDVI 및 객체기반 분류를 이용한 북한 재령군의 논벼 재배지역 추출 기법 연구)

  • Lee, Sang-Hyun;Oh, Yun-Gyeong;Park, Na-Young;Lee, Sung Hack;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.55-64
    • /
    • 2014
  • While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.

A State of the Art for the Vibrated Crushed-stone Compaction Pile (진동쇄석다짐말뚝공법의 기술적 수준)

  • Choi, Yong-Kyu;Kim, Won-Cheul;Jung, Chang-Kyu;Lee, Min-Hee;Kim, Tae-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.65-77
    • /
    • 2002
  • Based from the results of various field and laboratory tests, it was determined that VCCP(Vibrated Crushed-stone Compaction Pile) Method is more effective compared to SCP(Sand Compaction Pile) Method. VCCP method effectively increases soil bearing capacity and reinforces soil and slopes, prevents liquefaction, enhances drainage. But when it comes to the engineering design these factors are not considered, instead designs are performed using practical methods and equations. Furthermore, this method is very economical since crushed stone can be used instead of sand and it can be also used in off-shore construction. In this paper, it will be synthetically considered technical state at the present time, research object after this and necessity of research for VCCP Method.

  • PDF

An Experimental Study on Strength Characteristics of Clay Mixed with Organic Acid Ground Improvement Material (유기산계 지반개량재를 혼합한 점토의 강도 특성에 관한 실험적 연구)

  • Im, Soyeong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, it was examined a strength characteristic of organic acid material that is eco-friendly and low energy as a soil improving material. The object of this study is to analysis of strength changes with observing the clay mixed organic acid material through the unconfined compression strength test and triaxial compression test during 28 days. As a result of the tests, the strength of clay mixed organic acid material is increased when the more ages are prolonged, the more organic acid material mixture ratio growed. Therefore, in grasping the strength improvement effects of clay by organic acid material mixing, it confirmed that organic acid material as soil improving material is effective through unconfined compression strength test and triaxial compression test. Through this test, the definite strength increase is confirmed according to the mixture of the organic acid material and the possibility of soil improvement is also confirmed based on this result. From now on, detailed examination and field test will help closely to definite strength characteristics.

Bearing Capacity Analysis on Cyclic Loading of Soft Ground by Surface Reinforcement (표층처리지반에서의 반복하중재하시험을 통한 지지력 분석)

  • Kwak, Nokyung;Park, Minchul;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The study of surface ground reinforcing method is supposed to be considered preferentially is not satisfied and also doesn't contemplate plastic flow because of repetitive drive of construction equipment. Also, Terzaghi's bearing-capacity equation and Yamanouchi's suggestion have been used to design the surface reinforcement, but most engineers depend on their experience and cases constructed before because of dispersed variables and inappropriate bearing-capacity factors. Hence, plate load test and repetitive plate load test were performed in the field which is reinforced with geotextile, Geogrid whose tensile strength are 200kN/m, 100kN/m and bamboo($0.4m{\times}0.4m$). The object of this study is to evaluate bearing capacity and behaviour of surface ground and to compare each reinforcement form test results. From the results bearing capacity ratio increased by a maximum of 1.5 times with bamboo reinforcement method comparing to others.

Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring (국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발)

  • Park, Hye-In;Chung, Sung-Rae;Park, Ki-Hong;Moon, Jae-In
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Development of a Spatio-Temporal DSMS for the Real-time Management of Moving Objects Data Stream (이동체 데이터 스트림의 실시간 관리를 위한 시공간 DSMS의 개발)

  • Shin, In-Su;Kim, Jang-Woo;Kim, Joung-Joon;Han, Ki-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2012
  • Recently, according to the development of ubiquitous computing technology, the efficient management of locations of moving objects is increasing rapidly in various fields. However, MODBMS and DSMS can not support the efficient real-time management of spatio-temporal stream data of moving objects. Therefore, this paper designed and implemented a spatio-temporal DSMS which can support the efficient real-time management of spatio-temporal stream data of moving objects. Especially, to develop the spatio-temporal DSMS, we extended STREAM of Stanford University and used GEOS that supports spatial data types and spatial operators of OGC. Finally, this paper proved the efficiency of the spatio-temporal DSMS by applying it to the real-time monitoring field which requires the real-time management of spatio-temporal stream data of moving objects.

Development of a Suitability Analysis System for Wind Energy Facilities Using 3D Web GIS (3차원 Web GIS 기반 풍력에너지 시설물 적지분석 시스템 개발)

  • Kim, Kwang-Deuk;Yun, Chang-Yeol;Jo, Myung-Hee;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • Recently, with an increased social interest in new and renewable energy resources, together with rapid advancement in IT(information technology) and spatial information technology, there have recently been a lot of attempts to find out methods to make systematic and scientific use of information technology and spatial information technology, depending upon a fusion with GIS(Geographic Information System) spatial information technology in the field of new and renewable energy. This paper developed a suitability analysis system to conduct a correct and precise analysis of an ideal place for wind energy facilities in comprehensive consideration of topographic, economic, and cultural environments. It also used recent spatial information technology including 3D GIS to develop a supportive system for an analysis and decision making of an ideal place for 3D Web GIS-based wind energy facilities like a precise field information implementation, a 3D result display, a 3D object implementation, simulation, and so on. These systems make it possible to build scientific new-renewable energy facilities, to collect, manage and analyze information in an accurate and quantitative manner. In addition, they help serve as a turning point for the construction of a real-time information supply system. Furthermore, they can support rational decision making by making it possible to analyze a variety of forms of field information through building a system for the management of 3D image-based information on new-renewable energy resources.