• Title/Summary/Keyword: Geo-data Model

Search Result 383, Processing Time 0.032 seconds

Comparison of Flood Inundation Models using Topographic Feature (지형요소를 이용한 홍수범람해석 모형의 비교)

  • Moon, Changgeon;Lee, Jungsik;Cho, Sunggeun;Shin, Shachul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • The objective of this study is to compare flood inundation models for small stream basin. HEC-RAS model was used for the analysis of one dimensional hydraulics and HEC-GeoRAS, Ras Mapper and RiverCAD models were applied for the flood inundation analysis in Gum Chung stream. Flood inundations are to simulate by flood inundation models using observed data and rainfall on each frequency and to compare with inundation area based on the flood plain maps. The results of this study are as follows; Area of flood inundations by HEC-GeoRAS model is similar to that of flood plain map and appears in order of RAS Mapper and RiverCAD model. Flood inundation area by RiverCAD model is to estimate lager than that of RAS Mapper and HEC-GeoRAS model in flood area on each frequency and the results show that they have a little difference in models of flood inundation analysis at small stream. Comparing the area of flood inundations by flood depth, the results of three models are relatively similar in flood depth as 2.0 m below, and RiverCAD model shows a significant difference in flood depth as 2.0 m or more.

A Study on the Selection of Core Services for Geo-Spatial Big Data (공간 빅데이터 핵심서비스 선정에 관한 연구)

  • Lee, Myeong Ho;Park, Joon Min;Shin, Dong bin;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.385-396
    • /
    • 2015
  • The purpose of this study are in selecting a core service and drawing an analysis functions and service sector, based on contents of geo-spatial big data. For the study, the demand survey in the methodology has to be done by reviewing of preceding geo-spatial big data service. The survey has conducted by targeting on those experts in Industry-Academy-Research cooperation. From the survey, we could draw out requirements for the analysis function and the geo-spatial big data service sector. Also, order of priorities in service of four fields(Society, Environment, Economy, Humanities) has been utilized by a QFD(Quality Function Deployment). With the data, the first two priorities and required sectors for each field were selected for the analysis functions. From the result, we could suggest the core service model(plan), and also expect developments following each sectoral core service in the future.

A Study on Geo-Ontological Application of Coastal Information (연안정보의 지오-온톨로지 적용에 관한 연구)

  • Kang, Jeon-Young;Hwang, Chulsue
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.1
    • /
    • pp.112-127
    • /
    • 2013
  • It is unsuitable for Korean coastal information to work specific tasks because the coastal information of the current provides simple information, and thus the coastal information is required to reprocess. Therefore, this paper intends to present the ontology model for managing the coastal information using Geo-Ontology and seek application of ontology. The contents of this paper follow as; First of all, I considered the base theories for ontology and related researches. Second, I built Geo-Ontology which defines taxonomy of geographical features and their relationships. Third, I designed and implemented the coastal information ontology about basin of coast, Masan, using Geo-Ontology. Fourth, I carried out semantic queries and reasoning, assessment of the coastal information ontology. This paper will be a base study for many projects which are currently being conducted to integrate spatial information for more effective administrative works and easier maintenance and management of data. Also, this paper is significant in the sense that it is the study preparing for linked data.

  • PDF

Modeling Rainfall - Runoff Simulation System of JinWie Watershed using GIS based HEC-HMS Model (GIS 기반의 HEC - HMS를 이용한 진위천 유역의 강우-유출모형 구성)

  • Kim, Sang-Ho;Park, Min-Ji;Kang, Soo-Man;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.119-128
    • /
    • 2006
  • The purpose of this study is to prepare input data for FIA (flood inundation analysis) and FDA (flood damage assessment) through rainfall-runoff simulation by HEC-HMS model. For Jinwie watershed ($737.7km^2$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. The results will be used for river routing and inundation propagation analysis for various flood scenarios.

  • PDF

Research on Early Academic Warning by a Hybrid Methodology

  • Lun, Guanchen;Zhu, Lu;Chen, Haotian;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.21-22
    • /
    • 2021
  • Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.

  • PDF

Analysis of Data Rate on Optical Communication Links between Geo-Satellite and Earth Station (정지궤도 위성과 지구국간 광통신 링크의 전송속도 해석)

  • Han, Jong-Seok;Jung, Jin-Ho;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.120-137
    • /
    • 1997
  • Han's model, which is able to analyze optical communication between earth station and geo-satellite as a function of atmospheric conditions and elevation angles. is presented. In Han's model, atmospheric conditions are roughly classified into six basic types; clear sky, cloud, haze, fog, rain and snow. Data rate satisfying for the BER below $10^{-7}$ is analyzed by Han's model in case of up-link and down-link, respectively. Data rate is more limited by up-link than by down-link because the pointing loss caused by atmosphere on the up-link is greater than the spatial coherence degradation caused by atmosphere on the down-link.

  • PDF

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.

Comparison of Prediction Models for Identification of Areas at Risk of Landslides due to Earthquake and Rainfall (지진 및 강우로 인한 산사태 발생 위험지 예측 모델 비교)

  • Jeon, Seongkon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.15-22
    • /
    • 2019
  • In this study, the hazard areas are identified by using the Newmark displacement model, which is a predictive model for identifying the areas at risk of landslide triggered by earthquakes, based on the results of field survey and laboratory test, and literature data. The Newmark displacement model mainly utilizes earthquake and slope related data, and the safety of slope stability derived from LSMAP, which is a landslide prediction program. Backyang Mt. in Busan where the landslide has already occurred, was chosen as the study area of this research. As a result of this study, the area of landslide prone zone identified by using the Newmark displacement model without earthquake factor is about 1.15 times larger than that identified by using LSMAP.

Development of KOGD2003 Geoid Model and its Implementation by Visual Software

  • LEE Suk-Bae;SUH Yong-Woon
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • It is well known that GPS technique can be used for high accuracy leveling positioning if a precise geoid model is available to use at a surveying point. In this study, KOGD2003 geoid model was developed in and around Korean peninsula and this geoid model could be achieved by combining GPS/leveling data with the formerly developed KOGD2002. To this end, the software for orthometric height obtaining and geodetic datum transformation has been implemented with the visual C++ language, what we called GPS-GeoL v.1.0. In order to evaluate the performance and the accuracy of the software, GPS field tests were carried out in the Korean second-order leveling network over Chollabukdo area. Results of the tests have shown that the mean value of the differences between outputs of the software developed in this research and officially announced orthometric heights by NGII (National Geographic Information Institute) was 0.0221 m and also those of RMS was 0.0332 m. Therefore, it was possible to conclude that the KOGD2003 and GPS-GeoL v.1.0 software could be used to determine orthometric heights for civil construction field applications with cm-level accuracy.

  • PDF