• 제목/요약/키워드: Genomic Selection

검색결과 226건 처리시간 0.021초

The effectiveness of genomic selection for milk production traits of Holstein dairy cattle

  • Lee, Yun-Mi;Dang, Chang-Gwon;Alam, Mohammad Z.;Kim, You-Sam;Cho, Kwang-Hyeon;Park, Kyung-Do;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.382-389
    • /
    • 2020
  • Objective: This study was conducted to test the efficiency of genomic selection for milk production traits in a Korean Holstein cattle population. Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads with single nucleotide polymorphism information) were used to estimate breeding value by single step best linear unbiased prediction. Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk production traits. The estimated generation intervals of sire for the production of bulls (LSB) and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% in heifers without test records. The difference in the reliability between GEBV and EBV was especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain increased by about 24.2% in heifers without test records and by 35% in young bulls without progeny records. Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and genomic selection was more effective in the selection of young bulls and heifers without test records.

Genetic evaluation and accuracy analysis of commercial Hanwoo population using genomic data

  • Gwang Hyeon Lee;Yeon Hwa Lee;Hong Sik Kong
    • 한국동물생명공학회지
    • /
    • 제38권1호
    • /
    • pp.32-37
    • /
    • 2023
  • This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.

Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle

  • Lee, SeokHyun;Dang, ChangGwon;Choy, YunHo;Do, ChangHee;Cho, Kwanghyun;Kim, Jongjoo;Kim, Yousam;Lee, Jungjae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.913-921
    • /
    • 2019
  • Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.

Application of genotyping-by-sequencing (GBS) in plant genome using bioinformatics pipeline

  • Lee, Yun Gyeong;Kang, Chon-Sik;Kim, Changsoo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.58-58
    • /
    • 2017
  • The advent of next generation sequencing technology has elicited plenty of sequencing data available in agriculturally relevant plant species. For most crop species, it is too expensive to obtain the whole genome sequence data with sufficient coverage. Thus, many approaches have been developed to bring down the cost of NGS. Genotyping-by-sequencing (GBS) is a cost-effective genotyping method for complex genetic populations. GBS can be used for the analysis of genomic selection (GS), genome-wide association study (GWAS) and constructing haplotype and genetic linkage maps in a variety of plant species. For efficiently dealing with plant GBS data, the TASSEL-GBS pipeline is one of the most popular choices for many researchers. TASSEL-GBS is JAVA based a software package to obtain genotyping data from raw GBS sequences. Here, we describe application of GBS and bioinformatics pipeline of TASSEL-GBS for analyzing plant genetics data.

  • PDF

Genetic evaluation of sheep for resistance to gastrointestinal nematodes and body size including genomic information

  • Torres, Tatiana Saraiva;Sena, Luciano Silva;dos Santos, Gleyson Vieira;Filho, Luiz Antonio Silva Figueiredo;Barbosa, Bruna Lima;Junior, Antonio de Sousa;Britto, Fabio Barros;Sarmento, Jose Lindenberg Rocha
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.516-524
    • /
    • 2021
  • Objective: The genetic evaluation of Santa Inês sheep was performed for resistance to gastrointestinal nematode infection (RGNI) and body size using different relationship matrices to assess the efficiency of including genomic information in the analyses. Methods: There were 1,637 animals in the pedigree and 500, 980, and 980 records of RGNI, thoracic depth (TD), and rump height (RH), respectively. The genomic data consisted of 42,748 SNPs and 388 samples genotyped with the OvineSNP50 BeadChip. The (co)variance components were estimated in single- and multi-trait analyses using the numerator relationship matrix (A) and the hybrid matrix H, which blends A with the genomic relationship matrix (G). The BLUP and single-step genomic BLUP methods were used. The accuracies of estimated breeding values and Spearman rank correlation were also used to assess the feasibility of incorporating genomic information in the analyses. Results: The heritability estimates ranged from 0.11±0.07, for TD (in single-trait analysis using the A matrix), to 0.38±0.08, for RH (using the H matrix in multi-trait analysis). The estimates of genetic correlation ranged from -0.65±0.31 to 0.59±0.19, using A, and from -0.42±0.30 to 0.57±0.16 using H. The gains in accuracy of estimated breeding values ranged from 2.22% to 75.00% with the inclusion of genomic information in the analyses. Conclusion: The inclusion of genomic information will benefit the direct selection for the traits in this study, especially RGNI and TD. More information is necessary to improve the understanding on the genetic relationship between resistance to nematode infection and body size in Santa Inês sheep. The genetic evaluation for the evaluated traits was more efficient when genomic information was included in the analyses.

Overview of personalized medicine in the disease genomic era

  • Hong, Kyung-Won;Oh, Berm-Seok
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.643-648
    • /
    • 2010
  • Sir William Osler (1849-1919) recognized that "variability is the law of life, and as no two faces are the same, so no two bodies are alike, and no two individuals react alike and behave alike under the abnormal conditions we know as disease". Accordingly, the traditional methods of medicine are not always best for all patients. Over the last decade, the study of genomes and their derivatives (RNA, protein and metabolite) has rapidly advanced to the point that genomic research now serves as the basis for many medical decisions and public health initiatives. Genomic tools such as sequence variation, transcription and, more recently, personal genome sequencing enable the precise prediction and treatment of disease. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. In order to make personalized medicine effective, these genomic techniques must be standardized and integrated into health systems and clinical workflow. In addition, full application of personalized or genomic medicine requires dramatic changes in regulatory and reimbursement policies as well as legislative protection related to privacy. This review aims to provide a general overview of these topics in the field of personalized medicine.

A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • 제56권7호
    • /
    • pp.23.1-23.7
    • /
    • 2014
  • Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.

Genomic selection through single-step genomic best linear unbiased prediction improves the accuracy of evaluation in Hanwoo cattle

  • Park, Mi Na;Alam, Mahboob;Kim, Sidong;Park, Byoungho;Lee, Seung Hwan;Lee, Sung Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권10호
    • /
    • pp.1544-1557
    • /
    • 2020
  • Objective: Genomic selection (GS) is becoming popular in animals' genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method. Methods: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two methods: i) Pearson's correlation of genomic estimated breeding value (GEBV) with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (rM2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls). Results: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%). Conclusion: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo proven-bull evaluation program.

Heritability Estimated Using 50K SNPs Indicates Missing Heritability Problem in Holstein Breeding

  • Shin, Donghyun;Park, Kyoung-Do;Ka, Sojoeng;Kim, Heebal;Cho, Kwang-hyeon
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.146-151
    • /
    • 2015
  • Previous studies in Holstein have shown 35% to 51.8% heritability in milk production traits, such as milk yield, fat, and protein, using pedigree data. Other studies in complex human traits could be captured by common single-nucleotide polymorphisms (SNPs), and their genetic variations, attributed to chromosomes, are in proportion to their length. Using genome-wide estimation and partitioning approaches, we analyzed three quantitative Holstein traits relevant to milk production in Korean Holstein data harvested from 462 individuals genotyped for 54,609 SNPs. For all three traits (milk yield, fat, and protein), we estimated a nominally significant (p = 0.1) proportion of variance explained by all SNPs on the Illumina BovineSNP50 Beadchip ($h^2_G$). These common SNPs explained approximately most of the narrow-sense heritability. Longer genomic regions tended to provide more phenotypic variation information, with a correlation of 0.46~0.53 between the estimate of variance explained by individual chromosomes and their physical length. These results suggested that polygenicity was ubiquitous for Holstein milk production traits. These results will expand our knowledge on recent animal breeding, such as genomic selection in Holstein.

Identification of Genomic Differences between Hanwoo and Holstein Breeds Using the Illumina Bovine SNP50 BeadChip

  • Melka, Hailu Dadi;Jeon, Eun-Kyeong;Kim, Sang-Wook;Han, James-Bond;Yoon, Du-Hak;Kim, Kwan-Suk
    • Genomics & Informatics
    • /
    • 제9권2호
    • /
    • pp.69-73
    • /
    • 2011
  • The use of genomic information in genomic selection programs for dairy and beef cattle breeds has become a reality in recent years. In this investigation, we analyzed single-nucleotide polymorphisms (SNPs) for Hanwoo (n=50) and Holstein (n=50) breeds using the Illumina Bovine SNP50 BeadChip to facilitate genomic selection and utilization of the Hanwoo breed in Korea. Analysis of the entire genomes showed different spectra of SNP frequencies for Hanwoo and Holstein cattle. The study revealed a highly significant (p<0.001) difference between Hanwoo and Holstein cattle in minor allele frequency (MAF). The average MAFs were $0.19{\pm}0.16$ and $0.22{\pm}0.16$ for Hanwoo and Holstein, respectively. From the total of 52,337 SNPs that were successfully identified, about 72% and 79% were polymorphic in Hanwoos and Holsteins, respectively. Polymorphic and fixed SNPs were not distributed uniformly across the chromosomes within breeds or between the two breeds. The number of fixed SNPs on all chromosomes was higher in Hanwoo cattle, reflecting the genetic uniqueness of the Hanwoo breed. In general, the rate of polymorphisms detected in these two breeds suggests that the SNPs can be used for different applications, such as whole-genome association and comparative genetic studies, and are a helpful tool in developing breed identification genetic markers.