Browse > Article
http://dx.doi.org/10.5713/ajas.18.0847

Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle  

Lee, SeokHyun (Animal Breeding and Genetics Division, National Institute of Animal Science, RDA)
Dang, ChangGwon (Animal Breeding and Genetics Division, National Institute of Animal Science, RDA)
Choy, YunHo (Animal Breeding and Genetics Division, National Institute of Animal Science, RDA)
Do, ChangHee (Division of Animal and Dairy Science, Chungnam National University)
Cho, Kwanghyun (Department of Dairy Science, Korea National College of Agriculture and Fisheries)
Kim, Jongjoo (Division of Applied Life Science, Yeungnam University)
Kim, Yousam (Division of Applied Life Science, Yeungnam University)
Lee, Jungjae (Jun P&C Institute, INC.)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.32, no.7, 2019 , pp. 913-921 More about this Journal
Abstract
Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.
Keywords
Bayesian Approach; Genomic Selection; Holstein Cattle; Milk Production; Single-step Genomic Best Linear Unbiased Prediction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fragomeni B, Lourenco D, Tsuruta S, et al. Hot topic: use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes. J Dairy Sci 2015;98:4090-4. https://doi.org/10.3168/jds.2014-9125   DOI
2 Vitezica Z, Aguilar I, Misztal I, Legarra A. Bias in genomic predictions for populations under selection. Genet Res 2011;93:357-66. https://doi.org/10.1017/S001667231100022X   DOI
3 Lee J, Kachman SD, Spangler ML. The impact of training strategies on the accuracy of genomic predictors in United States Red Angus cattle. J Anim Sci 2017;95:3406-14. https://doi.org/10.2527/jas.2017.1604   DOI
4 Meuwissen T, Hayes B, Goddard M. Genomic selection: A paradigm shift in animal breeding. Anim Front 2016;6:6-14. https://doi.org/10.2527/af.2016-0002   DOI
5 Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic selection in dairy cattle: The USDA experience. Annu Rev Anim Biosci 2017;5:309-27. https://doi.org/10.1146/annurevanimal-021815-111422   DOI
6 Sargolzaei M, Chesnais J, Schenkel F. FImpute-An efficient imputation algorithm for dairy cattle populations. J Dairy Sci 2011;94:421.
7 Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T. BLUPF90 family of programs. Athens, GA, USA: University of Georgia; 2007.
8 Wang H, Misztal I, Aguilar I, et al. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet 2014;5:134. https://doi.org/10.3389/fgene.2014.00134   DOI
9 Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 2009;41:55. https://doi.org/10.1186/1297-9686-41-55   DOI
10 Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genet Sel Evol 2012;44:38. https://doi.org/10.1186/1297-9686-44-38   DOI
11 Garrick DJ, Fernando RL. Implementing a QTL detection study (GWAS) using genomic prediction methodology. Genome-wide association studies and genomic prediction: Springer; 2013. p. 275-98.
12 Fan B, Onteru SK, Du Z-Q, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PloS one 2011;6:e14726. https://doi.org/10.1371/journal.pone.0014726   DOI
13 Dematawewa C, Berger P. Genetic and phenotypic parameters for 305-day yield, fertility, and survival in Holsteins. J Dairy Sci 1998;81:2700-9. https://doi.org/10.3168/jds.S0022-0302(98)75827-8   DOI
14 Cho C, Cho K, Choy Y, et al. Estimation of genetic parameters for milk production traits in Holstein dairy cattle. J Anim Sci Technol 2013;55:7-11. https://doi.org/10.5187/JAST.2013.55.1.7   DOI
15 Nayeri S, Sargolzaei M, Abo-Ismail MK, et al. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genet 2016;17:75. https://doi.org/10.1186/s12863-016-0386-1
16 Wang H, Misztal I, Aguilar I, Legarra A, Muir W. Genomewide association mapping including phenotypes from relatives without genotypes. Genet Res 2012;94:73-83. https://doi.org/10.1017/S0016672312000274   DOI
17 Jiang L, Liu J, Sun D, et al. Genome wide association studies for milk production traits in Chinese Holstein population. PloS one 2010;5:e13661. https://doi.org/10.1371/journal.pone.0013661   DOI
18 Kaupe B, Brandt H, Prinzenberg E, Erhardt G. Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein cattle. J Anim Sci 2007;85:11-21. https://doi.org/10.2527/jas.2005-753   DOI
19 Van Hulzen K, Schopen G, van Arendonk J, et al. Genomewide association study to identify chromosomal regions associated with antibody response to Mycobacterium avium subspecies paratuberculosis in milk of Dutch Holstein-Friesians. J Dairy Sci 2012;95:2740-8. https://doi.org/10.3168/jds.2011-5005   DOI
20 Zeng J, Pszczola M, Wolc A, et al. Genomic breeding value prediction and QTL mapping of QTLMAS2011 data using Bayesian and GBLUP methods. BMC Proc 2012;6(Suppl 2):S7.   DOI
21 Lee SH, Clark S, van der Werf JH. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PloS one 2017;12:e0189775. https://doi.org/10.1371/journal.pone.0189775   DOI
22 Su G, Guldbrandtsen B, Gregersen V, Lund M. Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population. J Dairy Sci 2010;93:1175-83. https://doi.org/10.3168/jds.2009-2192   DOI
23 Ding X, Zhang Z, Li X, et al. Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows. J Dairy Sci 2013;96:5315-23. https://doi.org/10.3168/jds.2012-6194   DOI
24 Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 2009;92:4648-55. https://doi.org/10.3168/jds.2009-2064   DOI
25 Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen TH. The accuracy of genomic selection in Norwegian red cattle assessed by cross validation. Genetics 2009;183:1119-26. https://doi.org/10.1534/genetics.109.107391   DOI
26 Weigel K, VanRaden P, Norman H, Grosu H. A 100-year review: methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons to deep learning algorithms. J Dairy Sci 2017;100:10234-50. https://doi.org/10.3168/jds.2017-12954   DOI
27 Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157:1819-29.   DOI
28 VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980   DOI
29 Kachman SD. Incorporation of marker scores into national genetic evaluations. In: 9th genetic prediction workshop; Kansas City, MO, USA; 2008. p. 92-8.
30 Fernando RL, Cheng H, Golden BL, Garrick DJ. Computational strategies for alternative single-step Bayesian regression models with large numbers of genotyped and non-genotyped animals. Genet Sel Evol 2016;48:96. https://doi.org/10.1186/s12711-016-0273-2   DOI