• Title/Summary/Keyword: Genome Analysis

Search Result 2,364, Processing Time 0.029 seconds

A unique genetic lineage at the southern coast of China in the agar-producing Gracilaria vermiculophylla (Gracilariales, Florideophyceae)

  • Hu, Zi-Min;Liu, Ruo-Yu;Zhang, Jie;Duan, De-Lin;Wang, Gao-Ge;Li, Wen-Hong
    • ALGAE
    • /
    • v.33 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • Ocean warming can have significant negative impacts on population genetic diversity, local endemism and geographical distribution of a wide range of marine organisms. Thus, the identification of conservation units with high risk of extinction becomes an imperative task to assess, monitor, and manage marine biodiversity for policy-makers. Here, we surveyed population structure and genetic variation of the red seaweed Gracilaria vermiculophylla along the coast of China using genome-based amplified fragment length polymorphism (AFLP) scanning. Regardless of analysis methods used, AFLP consistently revealed a south to north genetic isolation. Populations at the southern coast of China showed unique genetic variation and much greater allelic richness, heterozygosity, and average genetic diversity than the northern. In particular, we identified a geographical barrier that may hinder genetic exchange between the two lineages. Consequently, the characterized genetic lineage at the southern coast of China likely resulted from the interplay of post-glacial persistence of ancestral diversity, geographical isolation and local adaptation. In particular, the southern populations are indispensable components to explore evolutionary genetics and historical biogeography of G. vermiculophylla in the northwestern Pacific, and the unique diversity also has important conservation value in terms of projected climate warming.

Awareness and Necessity of Registered Dentist Program for Children and Adolescents

  • Choi, Yong-Keum;Kim, Mi-Sun;Jeong, Su-Ra;Ryu, Da-Young;Kim, Eun-Jeong
    • Journal of Korean Dental Hygiene Science
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • Background: The program aims to enable the participants to receive oral health care with sustainability and give them the choice and prior autonomy of dental practitioners while enhancing the benefits of sustainability. The purpose of this study is to investigate the necessity, awareness, and satisfaction of the implementation of the registered dentist program for children and adolescents, and to promote the introduction of RDPCA. Methods: The survey targeted adult residents in their 20s or older who live in Seoul, an area that continuously implements the RDPCA system, especially in the cities of Cheonan and Asan Results: 79.7% were the most unaware. However, RDPCA participants were significantly more aware than non-participants. When surveying the desire to participate in RDPCA, 96.6% of the respondents said they would 'participate' in the non-RDPCA participate group. The analysis of the satisfaction level of the RDPCA received by their children indicated that 48.6% expressed their satisfaction, and 47.3% said they were healthy. There was a high percentage of people who said they would recommend RDPCA to others as well as a high rate of those who said they would continue to use RDPCA. Conclusions: The reality is that the awareness and implementation of RDPCA are low. For the development of oral health care programs for all children and adolescents in Korea, and the improvement of the satisfaction level of the dental care system, there should be an active consideration of high-quality programs and.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Functional characterization of gibberellin signaling-related genes in Panax ginseng

  • Kim, Jinsoo;Shin, Woo-Ri;Kim, Yang-Hoon;Shim, Donghwan;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.148-155
    • /
    • 2021
  • Gibberellins (GAs) are essential phytohormones for plant growth that influence developmental processes and crop yields. Recent functional genomic analyses of model plants have yielded good characterizations of the canonical GA signaling pathways and related genes. Although Panax ginseng has long been considered to have economic and medicinal importance, functional genomic studies of the GA signaling pathways in this crucial perennial herb plant have been rarely conducted. Here, we identified and performed functional analysis of the GA signaling-related genes, including PgGID1s, PgSLY1s, and PgRGAs. We confirmed that the physiological role of GA signaling components in P. ginseng was evolutionarily conserved. In addition, the important functional domains and amino acid residues for protein interactions among active GA, GID1, SCFSLY1, and RGA were also functionally conserved. Prediction and comparison of crystallographic structural similarities between PgGID1s and AtGID1a supported their function as GA receptors. Moreover, the subcellular localization and GA-dependent promotion of DELLA degradation in P. ginseng was similar to the canonical GA signaling pathways in other plants. Finally, we found that overexpression of PgRGA2 and PgSLY1-1 was sufficient to complement the GA-related phenotypes of atgid1a/c double- and rga quintuple-mutants, respectively. This critical information for these GA signaling genes has the potential to facilitate future genetic engineering and breeding of P. ginseng for increased crop yield and production of useful substances.

Evaluation of sgRNAs Targeting Pectate Lyase and Phytoene Synthase for Delaying Tomato Fruit Ripening (후숙 조절 유전자 Pectate lyase와 Phytoene Synthase 편집용 CRISPR-Cas9 sgRNA의 유전자 편집 효율 측정)

  • Park, Hyosun;Yang, So Hee;Kim, Euyeon;Koo, Yeonjong
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.179-185
    • /
    • 2021
  • BACKGROUND: Tomato genome editing using CRISPR-Cas9 is being actively conducted in recent days, and lots of plant researches have been aiming to develop high valued crops by editing target genes without inserting foreign genes. Many researchers have been involved in the manipulation of the crop ripening process because fruit ripening is an important fruit phenotype for increasing fruit shelf life, taste, and texture of crops. This paper intends to evaluate target sgRNA to edit the two ripening-related genes encoding pectate lyase (PL) and phytoene synthase (Psy) with the CRISPR-Cas9 system. METHODS AND RESULTS: The CRISPR-Cas9 expression vector was cloned to target the PL (Solyc03g111690), Psy1 (Solyc03g031860), and Psy2 (Solyc02g081330) genes, which are the ripening genes of tomatoes. Tomatoes injected with Agrobacterium containing the CRISPR-Cas9 expression vector were further cultured for 5 days and used to check gene editing efficiency. As a result of the target gene sequence analysis by the next generation sequencing method, gene editing efficiency was calculated, and the efficient target location was selected for the PL and Psy genes. CONCLUSION: Therefore, this study was aimed to establish target sgRNA data that could have higher efficiency of the CRISPR-Cas9 system to obtain the delayed ripening phenotype of tomato. The developed method and sgRNA information is expected to be utilized in the development of various crops to manage its ripening processes.

Enzymes and Their Reaction Mechanisms in Dimethylsulfoniopropionate Cleavage and Biosynthesis of Dimethylsulfide by Marine Bacteria

  • Do, Hackwon;Hwang, Jisub;Lee, Sung Gu;Lee, Jun Hyuck
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In marine ecosystems, the biosynthesis and catabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria is critical to microbial survival and the ocean food chain. Furthermore, these processes also influence sulfur recycling and climate change. Recent studies using emerging genome sequencing data and extensive bioinformatics analysis have enabled us to identify new DMSP-related genes. Currently, seven bacterial DMSP lyases (DddD, DddP, DddY, DddK, DddL, DddQ and DddW), two acrylate degrading enzymes (DddA and DddC), and four demethylases (DmdA, DmdB, DmdC, and DmdD) have been identified and characterized in diverse marine bacteria. In this review, we focus on the biochemical properties of DMSP cleavage enzymes with special attention to DddD, DddA, and DddC pathways. These three enzymes function in the production of acetyl coenzyme A (CoA) and CO2 from DMSP. DddD is a DMSP lyase that converts DMSP to 3-hydroxypropionate with the release of dimethylsulfide. 3-Hydroxypropionate is then converted to malonate semialdehyde by DddA, an alcohol dehydrogenase. Then, DddC transforms malonate semialdehyde to acetyl-CoA and CO2 gas. DddC is a putative methylmalonate semialdehyde dehydrogenase that requires nicotinamide adenine dinucleotide and CoA cofactors. Here we review recent insights into the structural characteristics of these enzymes and the molecular events of DMSP degradation.

Forecasting of the COVID-19 pandemic situation of Korea

  • Goo, Taewan;Apio, Catherine;Heo, Gyujin;Lee, Doeun;Lee, Jong Hyeok;Lim, Jisun;Han, Kyulhee;Park, Taesung
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.11.1-11.8
    • /
    • 2021
  • For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

Genetic Diversity of Rice Collections using Subspecies-specific STS Markers (아종특이적 STS 마커를 이용한 벼 품종의 유전다양성 분석)

  • Kim, Bong-Song;Jiang, Wenzhu;Koh, Hee-Jong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.101-105
    • /
    • 2009
  • Rice (Oryza sativa L.), the world's most important crop, is usually classified into ssp. indica and japonica based on morpho-physiological traits. In the previous study, we have developed subspecies-specific STS markers (SS markers) to readily discriminate between indica and japonica in O. sativa. In this study, we employed SS markers to investigate the genomic inclination of worldwide collections of O. sativa. A total of 320 varieties were divided into two groups with 63 SS markers. Namely, they formed two distinctive groups, indica and japonica, as expected by their geographic origin. The population structure analysis revealed that the variability of genetic background was greater in indica than in japonica. Some of them, however, exhibited intermediate genomic inclination between indica and japonica. These results are in general agreement with the previous studies, suggesting that SS markers are powerful tools for both determination of subspecies genome and assessment of genetic diversity in rice.

Molecular biological analysis of Bt-transgenic (Bt-9) rice and its effect on Daphnia magna feeding

  • Oh, Sung-Dug;Yun, Doh-Won;Chang, Ancheol;Lee, Yu-jin;Lim, Myung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.113-124
    • /
    • 2019
  • Insect-resistant transgenic (Bt-9) rice was generated by inserting mCry1Ac1, a modified gene from the soil bacterium Bacillus thuringiensis, into the genome of a conventional variety of rice (Ilmi). With regard to potential problems such as safety, an evaluation of non-target organisms is necessary as an essential element of an environmental risk assessment of genetically modified (GM) crops. We studied the effects of the Bt-9 rice on the survival of cantor Daphnia magna, a commonly used model organism in ecotoxicological studies. D. magna fed on the Bt-transgenic rice (Bt-9) and its near non-GM counterparts (Ilmi) grown in the same environment (a 100% ground rice suspension). The Bt-9 rice was confirmed to have the inserted T-DNA and protein expression evident by the PCR and ELISA analyses. The feeding study showed a similar cumulative immobility and abnormal response of the Daphnia magna between the Bt-9 rice and Ilmi. Additionally, the 48 h-EC50 values of the Bt-9 and Ilmi rice were 4,400 mg/L (95% confidence limits: 3861.01 - 5015.01 mg/L) and 5,564 mg/L (95% confidence limits: 4780.03 - 6476.93 mg/L), respectively. The rice NOEC (No observed effect concentration) value for D. magna was suggested to be 1,620 mg/L. We conclude that the tested Bt-9 and Ilmi have a similar cumulative immobility for D. magna, a widely used model organism, and the growth of Bt-9 did not affect non-target insects.

Replication Association Study between RBC Indices and Genetic Variants in Korean Population

  • Lee, Sang In;Park, Sangjung;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.190-195
    • /
    • 2019
  • Hemoglobin (Hb) concentrations and hematocrit (Hct) values can be changed by factors such as erythrocyte production, destruction, and bleeding. In addition, variants in the protein expression involved in the amount of red blood cells that determine Hb metabolism or Hct value can increase susceptibility to complex blood diseases. Previous studies have reported significant single nucleotide polymorphisms (SNPs) by applying a genome-wide association study (GWAS) on Hb levels and Hct values in European population. In this study, we confirmed whether the significant SNPs are replicated in Koreans. In previous studies, 26 and 18 SNPs with a significant correlation Hb and Hct were identified in Korean genotype data, and 21 and 12 SNPs were selected, respectively. The SNPs of PRKCE (rs10495928), TMPRSS6 (rs2235321, rs5756505, rs855791) were significantly associated with Hb (P<0.05). In the association analysis of Hct, the SNPs of HBS1L (rs6920211, rs9389268, rs9483788), PRKCE (rs4953318), SCGN (rs9348689) and TMPRSS6 (rs2413450) genes showed a significant correlation (P<0.05). Replicated SNPs and not replicated SNPs showed the difference of genetic distance calculated by Fst. The replicated SNPs with a significant correlation showed similar allele frequencies, whereas the not replicated SNPs showed a large difference in allele frequency. All replicated SNPs with significant correlations had Fst values less than 0.05, indicating that the genetic distance between the groups was close. On the other hand, the not replicated SNPs showed that the Fst value was 0.05 or more and the genetic distance was relatively large.