• 제목/요약/키워드: Genome Analysis

검색결과 2,396건 처리시간 0.031초

cDNA microarray profiling of Bombyx mori(kl20) during early embryogenesis

  • Hong, Sun-Mee;Kang, Seok-Woo;O, Tae-Jaeng;Kim, Nam-Soon;Lee, Jin-Sung;Goo, Tae-Won;Yun, Eun-Young;Choi, Ho;Hwang, Jae-Sam;Nho, Si-Kab
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.47-48
    • /
    • 2003
  • The development of cDNA microarray has permitted the analysis of thousands of genes simultaneously. cDNA microarray has been used to analyze gene expression profiles during developmental stage in both single and multicellular organisms. Two significant factors contributing to the limitation of the development of cDNA microarray in the Bombyx mori are the shortage of accessible repositories of cDNA clones and ESTs and the relative scarcity of facilities to produce microarrays and analyze the data generated. (omitted)

  • PDF

Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling;Shan, Yajun;Yao, Zhenyu;Li, Jianyong;Zhao, Zhenhu;Chen, Jiapei;Cong, Yuwen
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.186-191
    • /
    • 2006
  • Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.

Formation of a New Solo-LTR of the Human Endogenous Retrovirus H Family in Human Chromosome 21

  • Huh, Jae-Won;Kim, Dae-Soo;Ha, Hong-Seok;Kim, Tae-Hong;Kim, Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.360-363
    • /
    • 2006
  • Human endogenous retroviruses (HERVs) contribute to various kinds of genomic instability via rearrangement and retrotransposition events. In the present study the formation of a new human-specific solo-LTR belonging to the HERV-H family (AP001667; chromosome 21q21) was detected by a comparative analysis of human chromosome 21 and chimpanzee chromosome 22. The solo-LTR was formed as a result of an equal homologous recombination excision event. Several evolutionary processes have occurred at this locus during primate evolution, indicating that mammalian-wide interspersed repeat (MIR) and full-length HERV-H elements integrated into hominoid genomes after the divergence of Old World monkeys and hominoids, and that the solo-LTR element was created by recombination excision of the HERV-H only in the human genome.

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

HIF-1α-Dependent Gene Expression Program During the Nucleic Acid-Triggered Antiviral Innate Immune Responses

  • Hong, Sun Woo;Yoo, Jae Wook;Kang, Hye Suk;Kim, Soyoun;Lee, Dong-ki
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2009
  • Recent studies suggest a novel role of $HIF-1{\alpha}$ under nonhypoxic conditions, including antibacterial and antiviral innate immune responses. However, the identity of the pathogen-associated molecular pattern which triggers $HIF-1{\alpha}$ activation during the antiviral response remains to be identified. Here, we demonstrate that cellular administration of double-stranded nucleic acids, the molecular mimics of viral genomes, results in the induction of $HIF-1{\alpha}$ protein level as well as the increase in $HIF-1{\alpha}$ target gene expression. Whole-genome DNA microarray analysis revealed that double-stranded nucleic acid treatment triggers induction of a number of hypoxia-inducible genes, and induction of these genes are compromised upon siRNA-mediated $HIF-1{\alpha}$ knock-down. Interestingly, $HIF-1{\alpha}$ knock-down also resulted in down-regulation of a number of genes involved in antiviral innate immune responses. Our study demonstrates that $HIF-1{\alpha}$ activation upon nucleic acid-triggered antiviral innate immune responses plays an important role in regulation of genes involved in not only hypoxic response, but also immune response.

Cochleicola gelatinilyticus gen. nov., sp. nov., Isolated from a Marine Gastropod, Reichia luteostoma

  • Shin, Su-Kyoung;Kim, Eunji;Choi, Sungmi;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1439-1445
    • /
    • 2016
  • A yellow, rod-shaped, non-motile, gram-negative, and strictly aerobic bacterial strain, designated LPB0005T, was isolated from a marine gastropod, Reichia luteostoma. Here the genome sequence was determined, which comprised 3,395,737 bp with 2,962 protein-coding genes. The DNA G+C content was 36.3 mol%. The 16S rRNA gene sequence analysis indicated that the isolate represents a novel genus and species in the family Flavobacteriaceae, with relatively low sequence similarities to other closely related genera. The isolate showed chemotaxonomic properties within the range reported for the family Flavobacteriaceae, but possesses many physiological and biochemical characteristics that distinguished it from species in the closely related genera Ulvibacter, Jejudonia, and Aureitalea. Based on phylogenetic, phenotypic, and genomic analyses, strain LPB0005T represents a novel genus and species, for which the name Cochleicola gelatinilyticus gen. nov., sp. nov. is proposed. The type strain is LPB0005T (= KACC 18693T = JCM 31218T).

Cloning and Functional Characterization of the Germacradienol Synthase (spterp13) from Streptomyces peucetius ATCC 27952

  • Ghimire, Gopal Prasad;Oh, Tae-Jin;Lee, Hei-Chan;Kim, Byung-Gee;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1216-1220
    • /
    • 2008
  • Sequence analysis of the metabolically rich genome of Streptomyces peucetius ATCC 27952 revealed a 2,199 bp sesquiterpene alcohol (germacradienol) synthase-encoding gene from the germacradienol synthase/terpene cyclase gene cluster. The gene was named spterp13, and its putative function is as a germacradienol synthase/terpene cyclase. The amino acid sequence of Spterp13 shows 66% identity with SAV2163 (GeoA) from S. avermitilis MA4680 and 65% identity with SCO6073 from S. coelicolor A3(2), which produces germacradienol/geosmin. The full-length recombinant protein was heterologously expressed as a his-tagged fusion protein in Escherichia coli, purified, and shown to catalyze the $Mg^{2+}$-dependent conversion of farnesyl diphosphate to the germacradienol, which was verified by gas chromatography/mass spectrometry.

Large-Scale Copy-Number Alterations in Chicken Ovarian Cancer

  • Seo, Hee-Won;Choi, Jin-Won;Yun, Tae-Won;Lee, Hong-Jo;Kim, Hee-Seung;Song, Yong-Sang;Song, Gwon-Hwa;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.491-498
    • /
    • 2010
  • Copy-number variation (CNV) in particular genomic segments owing to deletions or duplications can induce changes in cellular gene expression patterns and may increase susceptibility to diseases such as cancer. The aim of this study was to examine CNVs related to the incidence of epithelial ovarian cancer in chickens. Genomic DNA was extracted from blood cells and cancerous ovaries collected from four 120-week-old White Leghorn chickens and were used for array-based comparative genome hybridization (CGH) analysis. As a result, 25 amplified and 10 deleted CNV regions were detected in chicken ovarian cancer. Of these, 10 amplified and two deleted CNV regions contained genes associated with human ovarian cancer. Our study using a chicken model may provide a better understanding of human epithelial ovarian cancer.

Porcine circovirus 2 국내 분리주의 유전적 특성 (Genetic characterization of porcine circovirus 2 Korean isolates)

  • 박최규;이경기;김현수
    • 대한수의학회지
    • /
    • 제44권4호
    • /
    • pp.571-579
    • /
    • 2004
  • In order to obtain the genetic informations of the Korean isolates of porcine circovirus 2 (PCV2), nucleotide sequences of total genome of three isolates and open reading frame 2 (ORF2) of four isolates were determined and compared with those of other reference PCV2 isolates. Nucleotide sequences of 3 isolates showed over 99% homology with those of reference strain (GenBank accession no. AF027217). Point mutations were mainly determined on ORF2 regions but little on ORF1 regions. The patterns of pointmutated sites and nucleotide substitution on ORF2 regions were generally consistent between Korean isolates, and these mutated sites observed in Korean isolates were also relatively similar to those of foreign isolates. Phylogenetic analysis of nucleotide or amino acid sequences showed that there were minor branches consisting of three clusters; cluster of Korea, Canada and America, cluster of Spain and Taiwan, and the last cluster of French and China isolates. These results suggested that Korean PCV2s were probably originated from North America such as Canada or USA. The genetic informations obtained from this study could be useful for the research of diagnosis and pathogenecity of PCV2.

Lamin A/C and Polymeric Actin in Genome Organization

  • Ondrej, Vladan;Lukasova, Emilie;Krejci, Jana;Matula, Pavel;Kozubek, Stanislav
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.356-361
    • /
    • 2008
  • In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.