• Title/Summary/Keyword: Genetic variance

Search Result 404, Processing Time 0.029 seconds

Complex Segregation Analysis of Total Milk Yield in Churra Dairy Ewes

  • Ilahi, Houcine;Othmane, M. Houcine
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.330-335
    • /
    • 2011
  • The mode of inheritance of total milk yield and its genetic parameters were investigated in Churra dairy sheep through segregation analyses using a Monte Carlo Markov Chains (MCMC) method. Data which consisted of 7,126 lactations belonging to 5,154 ewes were collected between 1999 and 2002 from 15 Spanish Churra dairy flocks. A postulated major gene was assumed to be additive and priors used for variance components were uniform. Based on 50 000 Gibbs samples from ten replicates chains of 100,000 cycles, the estimated marginal posterior means${\pm}$posterior standard deviations of variance components of milk yield were $23.17{\pm}18.42$, $65.20{\pm}25.05$, $120.40{\pm}42.12$ and $420.83{\pm}40.26$ for major gene variance ($\sigma_G^2$), polygenic variance ($\sigma_u^2$), permanent environmental variance ($\sigma_{pe}^2$) and error variance ($\sigma_e^2$), respectively. The results of this study showed the postulated major locus was not significant, and the 95% highest posterior density regions ($HPDs_{95%}$) of most major gene parameters included 0, and particularly for the major gene variance. The estimated transmission probabilities for the 95% highest posterior density regions ($HPDs_{95%}$) were overlapped. These results indicated that segregation of a major gene was unlikely and that the mode of inheritance of total milk yield in Churra dairy sheep is purely polygenic. Based on 50,000 Gibbs samples from ten replicates chains of 100,000 cycles, the estimated polygenic heritability and repeatability were $h^2=0.20{\pm}0.05$ and r=$0.34{\pm}0.06$, respectively.

Estimates of the Genetic Variation in the Height Growth of the Parents of Populus alba×P. glandulosa (Populus alba×P. glandulosa 교배양친수(交配兩親樹)의 생장(生長)에 대한 유전변이(遺傳變異)의 추정(推定))

  • Son, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.27-33
    • /
    • 1982
  • Genetic variance and heritability for height growth of Populus alba${\times}$ P. glandulosa were estimated. Remarkable different between P. alba${\times}$ alba(Italy), female and P. alba naturalized in Korea was observed in the genetic variance and therefore genetic character of the P. alba${\times}$ alba(Italy) was considered better than that of P. alba. The heritability (83%) for the female was considerably high. On the other hand, P. glandulosa, pollen tree. showed narrow genetic variance and also very heritability(17%). Two(A and B) of three pollen trees showed the same trend in the genetric variance. However, the other(c) was somewhat different from A and B. Similarly, rooting ability of cuttings differed between female trees, but did not between male trees. Naturalized Pl alba showed relatively higher rooting ability than P. alba${\times}$ alba(Italy). In the pollen trees, the ability was similar in two male trees. However, the other male tree(c) was slightly poorer than the other two.

  • PDF

DIRECT, MATERNAL AND CYTOPLASMIC GENETIC EFFECTS ON DAILY GAIN FROM BIRTH TO 45 DAYS OF BEEF CALVES

  • Shimada, K.;Willham, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.567-570
    • /
    • 1992
  • Variance components were estimated for calf daily gain from birth to 45 days of age in small (S), medium (M) and large (L) lines of beef cattle. Analyses involved records collected on 682 (S), 510 (M) and 228 (L) calves in Iowa, USA from 1978 to 1986. Cytoplasmic lines were determined based on the foundation female in the maternal lineage of each animal. Data were analyzed separately by size line using a derivative-free restricted maximum likelihood procedure under an animal model including additive direct (a), additive maternal (m), cytoplasmic lineage effects and covariance (a, m). The heritabilities for direct and maternal, and the cytoplasmic effects, were 0.13, 0.35 and 0.00 for S, 0.14, 0.32 and 0.00 for M, and 0.05, 0.33 and 0.03 for L. Genetic correlations (a, m) for S, M and L were -0.33, -0.57 and -1.00, respectively. The maternal genetic effect was the most important for calf growth between birth and 45 dyas of age and cytoplasmic variances were not important in any line.

Estimation of Crossbreeding Parameters for Serum Lysozyme Level in Broiler

  • Nath, M.;Singh, B.P.;Saxena, V.K.;Dev Roy, A.K.;Singh, R.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.166-171
    • /
    • 2002
  • The main objective of the present study is to estimate the crossbreeding parameters in respect to serum lysozyme level in broilers. The experiment involved a complete $4{\times}4$ diallel design using four synthetic broiler lines namely Coloured Synthetic Male Line (CSML), White Synthetic Male Line (WSML), Coloured Synthetic Female Line (CSFL) and Naked Neck Line (NNL). The lyophilised Micrococcus lysodeikticus suspension was used to detect the lysozyme level in the serum of birds. The data were analysed by least-squares method to find the effects of genetic and non-genetic factors using appropriate model. The crossbreeding parameters for this trait were estimated by complete diallel model assuming the effect of each synthetic line as fixed. The results indicated that additive and non-additive genetic variation attributed to minor genes at many loci is important for the genetic control of serum lysozyme level in chickens. Total non-additive components of variance also showed significant amount of heterosis in crossbred progenies, and therefore exploitation of non-additive component of variance is possible for improvement in serum lysozyme level in broilers. The overall results suggested that for commercial broiler production system, the selection for specialised line on the basis of serum lysozyme level and subsequent crossing of parent lines could enhance the immunocompetence status in relation to serum lysozyme level in crossbred chickens.

Variance Component Estimates with Dominance Models for Milk Production in Holsteins of Japan Using Method R

  • Kawahara, Takayoshi;Gotoh, Yusaku;Yamaguchi, Satoshi;Suzuki, Mitsuyoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.769-774
    • /
    • 2006
  • Fractions of herd-year-season, sire by herd interaction, additive genetic and dominance genetic variances were estimated for milk production traits in Holsteins of Japan using Method R. Inbreeding depressions for milk production traits were also estimated. Estimated fractions of herd-year-season variances ranged from 0.056 to 0.074 for yield traits and from 0.033 to 0.035 for content traits. Estimated fractions of additive genetic variances to phenotypic variances (heritabilities across a herd in the narrow sense) were 0.306, 0.287, 0.273, 0.255, 0.723, 0.697 and 0.663 for milk, fat, SNF and protein yields, and fat, SNF and protein contents, respectively. Estimated fractions of dominance genetic variances ranged from 0.019 to 0.022 for yield traits and from 0.014 to 0.018 for content traits. Fractions of variances for sire by herd interaction were estimated to range from 0.020 to 0.025 for yield traits and 0.011 to 0.012 for content traits. Estimates of inbreeding depression for milk, fat, SNF and protein yields were -36.16 kg, -1.42 kg, -3.24 kg and -1.15 kg per 1% inbreeding for milk, fat, SNF and protein yields, respectively. Estimates of depression per 1% inbreeding for content traits were positive at $0.39{\times}10^{-3}%$, $0.31{\times}10^{-3}%$ and $0.82{\times}10^{-3}%$ for fat, SNF and protein contents, respectively.

Application of random regression models for genetic analysis of 305-d milk yield over different lactations of Iranian Holsteins

  • Torshizi, Mahdi Elahi;Farhangfar, Homayoun;Mashhadi, Mojtaba Hosseinpour
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1382-1387
    • /
    • 2017
  • Objective: During the last decade, genetic evaluation of dairy cows using longitudinal data (test day milk yield or 305-day milk yield) using random regression method has been officially adopted in several countries. The objectives of this study were to estimate covariance functions for genetic and permanent environmental effects and to obtain genetic parameters of 305-day milk yield over seven parities. Methods: Data including 60,279 total 305-day milk yield of 17,309 Iranian Holstein dairy cows in 7 parities calved between 20 to 140 months between 2004 and 2011. Residual variances were modeled by homogeneous and step functions with 7 and 10 classes. Results: The results showed that a third order polynomial for additive genetic and permanent environmental effects plus a step function with 10 classes for the residual variance was the most adequate and parsimonious model to describe the covariance structure of the data. Heritability estimates obtained by this model varied from 0.17 to 0.28. The performance of this model was better than repeatability model. Moreover, 10 classes of residual variance produce the more accurate result than 7 classes or homogeneous residual effect. Conclusion: A quadratic Legendre polynomial for additive genetic and permanent environmental effects with 10 step function residual classes are sufficient to produce a parsimonious model that explained the change in 305-day milk yield over consecutive parities of Iranian Holstein cows.

Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea

  • Lee, SeokHyun;Do, ChangHee;Choy, YunHo;Dang, ChangGwon;Mahboob, Alam;Cho, Kwanghyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.334-340
    • /
    • 2019
  • Objective: The objective of this study was to investigate the genetic components of daily milk yield and to re-rank bulls in South Korea by estimated breeding value (EBV) under heat stress using the temperature-humidity index (THI). Methods: This study was conducted using 125,312 monthly test-day records, collected from January 2000 to February 2017 for 19,889 Holstein cows from 647 farms in South Korea. Milk production data were collected from two agencies, the Dairy Cattle Genetic Improvement Center and the Korea Animal Improvement Association, and meteorological data were obtained from 41 regional weather stations using the Automated Surface Observing System (ASOS) installed throughout South Korea. A random regression model using the THI was applied to estimate genetic parameters of heat tolerance based on the test-day records. The model included herd-year-season, calving age, and days-in-milk as fixed effects, as well as heat tolerance as an additive genetic effect, permanent environmental effect, and direct additive and permanent environmental effect. Results: Below the THI threshold (${\leq}72$; no heat stress), the variance in heat tolerance was zero. However, the heat tolerance variance began to increase as THI exceeded the threshold. The covariance between the genetic additive effect and the heat tolerance effect was -0.33. Heritability estimates of milk yield ranged from 0.111 to 0.176 (average: 0.128). Heritability decreased slightly as THI increased, and began to increase at a THI of 79. The predicted bull EBV ranking varied with THI. Conclusion: We conclude that genetic evaluation using the THI function could be useful for selecting bulls for heat tolerance in South Korea.

Heritability and Genetic Gains for Height Growth in 20-year-Old Korean White Pine in Korea

  • Shin, Man-Yong;Park, Hyung-Soon;Cho, Yoon-Jin;Chung, Dong-Jun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.677-679
    • /
    • 2006
  • The objectives of this study were to examine the genetic variation of 20-year-old tree height and to estimate heritabilities and genetic gains of Korean white pine. Analysis of variance showed that families and family x block interaction had the significant (p=0.01) effects on tree height. However, family variation appears to be much greater than the variation due to family x block interaction. Individual tree heritability was higher ($h_I^2=0.73$) than family heritability, ($h_F^2=0.83$) therefore, combined selection showed the largest genetic gain (17.76%) in a given equal intensity of selection.

Genetic risk factors associated with respiratory distress syndrome

  • Jo, Heui Seung
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.4
    • /
    • pp.157-163
    • /
    • 2014
  • Respiratory distress syndrome (RDS) among preterm infants is typically due to a quantitative deficiency of pulmonary surfactant. Aside from the degree of prematurity, diverse environmental and genetic factors can affect the development of RDS. The variance of the risk of RDS in various races/ethnicities or monozygotic/dizygotic twins has suggested genetic influences on this disorder. So far, several specific mutations in genes encoding surfactant-associated molecules have confirmed this. Specific genetic variants contributing to the regulation of pulmonary development, its structure and function, or the inflammatory response could be candidate risk factors for the development of RDS. This review summarizes the background that suggests the genetic predisposition of RDS, the identified mutations, and candidate genetic polymorphisms of pulmonary surfactant proteins associated with RDS.