Browse > Article
http://dx.doi.org/10.5713/ajas.2006.769

Variance Component Estimates with Dominance Models for Milk Production in Holsteins of Japan Using Method R  

Kawahara, Takayoshi (Holstein Cattle Association of Japan, Hokkaido Branch)
Gotoh, Yusaku (Holstein Cattle Association of Japan, Hokkaido Branch)
Yamaguchi, Satoshi (Hokkaido Dairy Cattle Milk Recording and Testing Association)
Suzuki, Mitsuyoshi (Obihiro University of Agriculture and Veterinary Medicine)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.6, 2006 , pp. 769-774 More about this Journal
Abstract
Fractions of herd-year-season, sire by herd interaction, additive genetic and dominance genetic variances were estimated for milk production traits in Holsteins of Japan using Method R. Inbreeding depressions for milk production traits were also estimated. Estimated fractions of herd-year-season variances ranged from 0.056 to 0.074 for yield traits and from 0.033 to 0.035 for content traits. Estimated fractions of additive genetic variances to phenotypic variances (heritabilities across a herd in the narrow sense) were 0.306, 0.287, 0.273, 0.255, 0.723, 0.697 and 0.663 for milk, fat, SNF and protein yields, and fat, SNF and protein contents, respectively. Estimated fractions of dominance genetic variances ranged from 0.019 to 0.022 for yield traits and from 0.014 to 0.018 for content traits. Fractions of variances for sire by herd interaction were estimated to range from 0.020 to 0.025 for yield traits and 0.011 to 0.012 for content traits. Estimates of inbreeding depression for milk, fat, SNF and protein yields were -36.16 kg, -1.42 kg, -3.24 kg and -1.15 kg per 1% inbreeding for milk, fat, SNF and protein yields, respectively. Estimates of depression per 1% inbreeding for content traits were positive at $0.39{\times}10^{-3}%$, $0.31{\times}10^{-3}%$ and $0.82{\times}10^{-3}%$ for fat, SNF and protein contents, respectively.
Keywords
Method R; Additive Variance; Dominance Variance; Sire by Herd Interaction; Inbreeding Depression; Milk Production; Holstein;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Boichard, D. and J. Lee. 1992. Approximate accuracy of genetic evaluation under a single-trait animal model. J. Dairy Sci. 75:868-877   DOI   ScienceOn
2 Miglior, F., E. B. Burnside and B. W. Kennedy. 1995. Production traits of Holstein cattle: Estimation of nonadditive genetic variance components and inbreeding depression. J. Dairy Sci. 78:1174-1180   DOI   ScienceOn
3 Suzuki, M., K. Kuchida and Y. Saito. 1997. Multiple trait REML estimates of genetic parameters for Holstein cows for milk component yields and their log-transformations using a repeatability model. Anim. Sci. Technol. (Jpn.) 68:615-621
4 Tempelman, R. J. and E. B. Burnside. 1990. Additive and nonadditive genetic variation for production traits in Canadian Holsteins. J. Dairy Sci. 73:2206-2213   DOI
5 Wada, Y., A. Takebe, S. Matsumoto and K. Yokouchi. 1991. Effects of interaction between sire and region on sire evaluation of Holstein bulls in Japan. Anim. Sci. Technol. (Jpn.) 62:63-68
6 Wiggans, G. R., P. M. VanRaden and J. Zuurbier. 1995. Calculation and use of inbreeding coefficients for genetic evaluation of United States dairy cattle. J. Dairy Sci. 78:1584-1590   DOI   ScienceOn
7 Kawahara, T., Y. Gotoh, K. Hagiya, M. Suzuki and M. Sogabe. 2002. Calculation of inbreeding coefficients using incomplete pedigrees and its influence on inbreeding depression and breeding value for milk production in Hokkaido Holstein populations of Japan. Nihon Chikusan Gakkaiho 73:249-259   DOI
8 Van Vleck, L. D. 1987. Contemporary groups for genetic evaluations. In: Genetic Research 1986-1987 Report, pp. 98-122. Eastern Artificial Insemination Cooperative, Inc., New York, USA
9 Meyer, K. 1987. Estimates of variances due to sire${\times}$herd interactions and environmental covariances between paternal half-sibs for first lactation dairy production. Livest. Prod. Sci. 17:95-115   DOI   ScienceOn
10 VanRaden, P. M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. J. Dairy Sci. 75:3136-3144   DOI
11 Short, T. H. and T. J. Lawlor. 1992. Inbreeding in the U.S. Holsteins and its effect on yield and type traits. J. Dairy Sci. 75(Supp. 1): 54(Abstr.)
12 Misztal, I. 1997. Estimation of Variance components with largescale dominance models. J. Dairy Sci. 80:965-974   DOI   ScienceOn
13 Reverter, A., B. L. Golden, R. M. Bourdon and J. S. Brinks. 1994. Method R variance components procedure: Application on the simple breeding value model. J. Anim. Sci. 72:2247-2253
14 Pereira, J. A. C., M. Suzuki, K. Hagiya, T. Yoshizawa, S. Tsuruta and I. Misztal. 2001. Method R estimates of heritability and repeatability for milk, fat and protein yields of Japanese Holstein. Anim. Sci. J. (Jpn.) 72:372-377
15 Van Tassell, C. P., I. Misztal and L. Varona. 2000. Method R estimates of additive genetic, dominance genetic, and permanent environmental fraction of variance for yield and health traits of Holsteins. J. Dairy Sci. 83:1873-1877   DOI   ScienceOn
16 Hofer, A. 1998. Variance component estimation in animal breeding: a review. J. Anim. Breed. Genet. 115:247-265   DOI
17 Suzuki, M. and L. D. Van Vleck. 1994. Heritability and repeatability for milk production traits of Japanese Holsteins from an animal model. J. Dairy Sci. 77:583-588   DOI   ScienceOn
18 Misztal, I. and T. J. Lawlor. 1999. Supply of genetic information - amount, format, and frequency. J. Dairy Sci. 82:1052-1060   DOI   ScienceOn
19 Henderson, C. R. 1973. Sire evaluation and genetic trends. Proceeding of Animal Breeding Genetics Symposium in Honor of J. L. Lush. American Society of Animal Science, American Dairy Science Association, Champaign, IL
20 Weigel, K. A. and D. Gianola. 1993. A computationally simple Bayesian method for estimation of heterogeneous within-herd phenotypic variances. J. Dairy Sci. 76:1455-1465   DOI   ScienceOn
21 VanRaden, P. M., T. J. Lawlor, T. H. Short and I. Hoeschele. 1992. Use of reproductive technology to estimate variances and predict effects of gene interactions. J. Dairy Sci. 75:2892-2901   DOI   ScienceOn
22 Hoeschele, I. and P. M. VanRaden. 1991. Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects. J. Dairy Sci. 74:557- 569   DOI   ScienceOn
23 National Livestock Breeding Center. 2003. Bulletin of the dairy sire and cow evaluation, Vol 23. National Livestock Breeding Center, Japan
24 Schaeffer, L. R., M. Calus and X. Liu. 2001. Genetic evaluation of conformation traits using random contemporary groups and reducing the influence of parent averages. Livest. Prod. Sci. 69:129-137   DOI   ScienceOn
25 Schaeffer, L. R. and B. W. Kennedy. 1986. Computing strategies for solving mixed model equations. J. Dairy Sci. 69:575-579   DOI
26 VanRaden, P. M. and G. R. Wiggans. 1991. Deviation, calculation, and use of national animal model information. J. Dairy Sci. 74:2737-2746   DOI   ScienceOn
27 Dimov, G., L. G. Albuquerque, J. F. Keown, L. D. Van Vleck and H. D. Norman. 1995. Variance of interaction effects of sire and herd for yield traits of Holsteins in California, New York, and Pennsylvania with an animal model. J. Dairy Sci. 78:939-946   DOI   ScienceOn