• Title/Summary/Keyword: Genetic susceptibility

Search Result 489, Processing Time 0.032 seconds

Cytochrome P450 1A1, 2E1 and GSTM1 Gene Polymorphisms and Susceptibility to Colorectal Cancer in the Saudi Population

  • Saeed, Hesham Mahmoud;Alanazi, Mohammad Saud;Nounou, Howaida Attia;Shalaby, Manal Ali;Semlali, Abdelhabib;Azzam, Nahla;Aljebreen, Abdeulrahan;Alharby, Othman;Parine, Narasimha Reddy;Shaik, Jilani;Maha, Maha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3761-3768
    • /
    • 2013
  • Background: The Saudi population has experienced a sharp increase in colorectal and gastric cancer incidences within the last few years. The relationship between gene polymorphisms of xenobiotic metabolizing enzymes and colorectal cancer (CRC) incidence has not previously investigated among the Saudi population. The aim of the present study was to investigate contributions of CYP1A1, CYP2E1, and GSTM1 gene polymorphisms. Materials and Methods: Blood samples were collected from CRC patients and healthy controls and genotypes were determined by polymerase chain reaction restriction fragment length polymorphism and sequencing. Results and Conclusions: $CYP2E1^*6$ was not significantly associated with CRC development (odd ratio=1.29; confidence interval 0.68-2.45). A remarkable and statistically significant association was observed among patients with $CYP1Awt/^*2A$ (odd ratio=3.65; 95% confidence interval 1.39-9.57). The $GSTM1^*0/^*0$ genotype was found in 2% of CRC patients under investigation. The levels of CYP1A1, CYP2E1 and GSTM1 mRNA gene expression were found to be 4, 4.2 and 4.8 fold, respectively, by quantitative real time PCR. The results of the present case-control study show that the studied Saudi population resembles Caucasians with respect to the considered polymorphisms. Investigation of genetic risk factors and susceptibility gene polymorphisms in our Saudi population should be helpful for better understanding of CRC etiology.

Evaluation of resistance to Pierce's disease among grapevine cultivars by using the culture filtrates produced from Xylella fastidiosa (Xylella fastidiosa의 배양여액을 이용한 포도나무 피어스병 품종 저항성 검정)

  • Park, Myung Soo;Lu, Jiang;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.394-400
    • /
    • 2017
  • This study investigated whether culture filtrates produced by Xylella fastidiosa can be used to determine the varietal susceptibility to Pierce's disease in grapevines (Vitis spp.) as a substitute for pathogen inoculation or field screening. A bioassay of grape leaves with culture filtrates from the pathogen showed that their phytotoxicities were active and host-selective. Ethyl acetate extracts from them also showed toxicities and host selectivity in both bunches of grapes and muscadine grapes. The sensitive range of plants to the culture filtrates and their ethyl acetate extracts was consistent with the host range of the Pierce's disease pathogen. Susceptible cultivars are sensitive to even highly diluted culture filtrates, while resistant cultivars were not affected even at their original culture filtrates. Susceptible cultivars were more sensitive to the undiluted culture filtrate than were highly diluted culture filtrates, and the younger leaves were the most sensitive to the culture filtrates in grapes. Although some European grape cultivars showed moderately susceptibility in this study, the determination of varietal resistance to Pierce's disease by the treatment of culture filtrates of pathogens could provide valuable information for the preliminary selection of genetic resources and seedlings from hybridization in a disease resistant grape breeding program.

The miR-146a rs2910164 G > C Polymorphism and Susceptibility to Digestive Cancer in Chinese

  • Wu, Dong;Wang, Fan;Dai, Wei-Qi;He, Lei;Lu, Jie;Xu, Ling;Guo, Chuan-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.399-403
    • /
    • 2013
  • Background: Several studies have reported the role of the miR-146a rs2910164 G > C polymorphism as a susceptibility factor for several digestive cancers. However, the results have been controversial. Therefore, we conducted the present meta-analysis to obtain the most reliable estimate of the association. Methods: PubMed, Embase and Web of Science databases were searched. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were extracted and pooled to assess the strength of the association between miR-146a rs2910164 G > C polymorphism and digestive cancer risk. A total of four eligible studies including 3,447 cases and 5,041 controls based on the search criteria were included. Results: We observed that miR-146a rs2910164 G > C polymorphism was not significantly correlated with digestive cancer risks when all studies were pooled into the meta-analysis. While we found that miR-146a rs2910164 polymorphism was not associated with gastric cancer, it was significantly linked with hepatocellular cancer risk (the homozygote codominant model: OR = 1.40, 95% CI = 1.04-1.87). In the stratified analysis by ethnicity, significant associations were observed in Chinese population for the allele contrast model (OR = 1.25; 95% CI = 1.12-1.38), for the homozygote codominant model (OR = 1.62; 95% CI = 1.28-2.04), and for the recessive model (OR = 1.38; 95% CI = 1.16-1.64). However, studies with Asian groups presented no significant association for all genetic models. Conclusions: This meta-analysis suggests that the miR-146a rs2910164 G > C polymorphism is a low-penetrant risk factor for digestive cancers in Chinese.

Genetic Variants of CYP2D6 Gene and Cancer Risk: A HuGE Systematic Review and Meta-analysis

  • Zhou, Li-Ping;Luan, Hong;Dong, Xi-Hua;Jin, Guo-Jiang;Man, Dong-Liang;Shang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3165-3172
    • /
    • 2012
  • Objective: Genetic polymorphisms in metabolic enzymes are associated with numerous cancers. A large number of single nucleotide polymorphisms (SNPs) in the CYP2D6 gene have been reported to associate with cancer susceptibility. However, the results are controversial. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to summarize the evidence for associations. Methods: Studies focusing on the relationship between CYP2D6 gene polymorphisms and susceptibility to cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers and the meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software. Odds ratios (ORs) with 95% confidence intervals (95%CIs) were calculated. Results: According to the inclusion criteria, forty-three studies with a total of 7,009 cancer cases and 9,646 healthy controls, were included in the meta-analysis. The results showed that there was a positive association between heterozygote (GC) of rs1135840 and cancer risk (OR=1.92, 95%CI: 1.14-3.21, P=0.01). In addition, we found that homozygote (CC) of rs1135840 might be a protective factor for cancer (OR=0.58, 95%CI: 0.34-0.97, P=0.04). Similarly, the G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 had negative associations with cancer risk (OR=0.69, 95%CI: 0.48-0.99, P=0.04; OR=0.60, 95%CI: 0.38-0.94, P=0.03; OR=0.50, 95%CI: 0.26-0.95, P=0.03; respectively). Conclusion: This meta-analysis suggests that CYP2D6 gene polymorphisms are involved in the pathogenesis of various cancers. The heterozygote (GC) of rs1135840 in CYP2D6 gene might increase the risk while the homozygote (CC) of rs1135840, G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 might be protective factors.

Association of CYP2E1 and NAT2 Polymorphisms with Lung Cancer Susceptibility among Mongolian and Han Populations in the Inner Mongolian Region

  • Zhang, Jing-Wen;Yu, Wan-Jia;Sheng, Xiao-Min;Chang, Fu-Hou;Bai, Tu-Ya;Lv, Xiao-Li;Wang, Guang;Liu, Su-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9203-9210
    • /
    • 2014
  • Purpose: To explore associations of CYP2E1 and NAT2 polymorphisms with lung cancer susceptibility among Mongolian and Han populations in the Inner Mongolian region. Materials and Methods: CYP2E1 and NAT2 polymorphisms were detected by PCR-RFLP in 930 lung cancer patients and 1000 controls. Results: (1) Disequilibrium of the distribution of NAT2 polymorphism was found in lung cancer patients among Han and Mongolian populations (p=0.031). (2) Lung cancer risk was higher in individuals with c1, D allele of CYP2E1 RsaI/PstI, DraI polymorphisms and slow acetylation of NAT2 (c1 compared with c2, OR=1.382, 95%CI: 1.178-1.587, p=0.003; D compared with C, OR=1.241, 95%CI: 1.053-1.419, P<0.001; slow acetylation compared with rapid acetylation, OR=1.359, 95%CI:1.042-1.768, p=0.056) (3) Compared with c2/c2 and rapid acetylation, c1/c1 together with slow acetylation synergetically increased risk of lung cancer 2.83 fold. (4) Smokers with CYP2E1 c1/c1, DD, and NAT2 slow acetylation have 2.365, 1.916, 1.841 fold lung cancer risk than others with c2/c2, CC and NAT2 rapid acetylation, respectively. (5) Han smokers with NAT2 slow acetylation have 1.974 fold lung cancer risk than others with rapid acetylation. Conclusions: Disequilibrium distribution of NAT2 polymorphism was found in lung cancer patients among Han and Mongolian populations. Besides, Han smokers with NAT2 slow acetylation may have higher lung cancer risk compared with rapid acetylation couterparts. CYP2E1 c1/c1, DD and NAT2 slow acetylation, especially combined with smoking, contributes to the development of lung cancer. CYP2E1 c1/c1 or DD genotype and NAT2 slow acetylation have strong synergistic action in increasing lung cancer risk.

PLCE1 rs2274223 Polymorphism and Susceptibility to Esophageal Cancer: a Meta-analysis

  • Guo, Li-Yan;Yang, Ning;Hu, Die;Zhao, Xia;Feng, Bing;Zhang, Yan;Zhai, Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9107-9112
    • /
    • 2014
  • Purpose: To investigate and study the relationship between the PLCE1 rs2274223 gene polymorphism and susceptibility to esophageal cancer by meta-analysis. Materials and Methods: The literature was searched in Wanfang, CNKI, PubMed, CBM, Web of Science, MEDLINE, EMBASE, Springer, Elsevier and Cochrane databases from the date of January $1^{st}$ 2004 to April $1^{st}$ 2014 to collect case-control studies on the PLCE1 polymorphism and susceptibility to esophageal cancer. For the population genotype distributions of both esophagus cancer and control groups, their odds ratios (ORs) and 95% confidence intervals (CIs) were taken as effect indexes. Disqualified studies were excluded. Odds ratios of PLCE1 rs2274223 genotype distributions in the group of patients with esophageal cancer and the group of healthy control were calculated. The metaanalysis software, RevMan5.0, was applied for heterogeneity test, pooled OR and 95% confidence intervals. Sensitivity analysis and publication bias were also explored. Results: A total of twelve case-control studies were included, covering a total of 9, 912 esophageal cancer cases and 13, 023 controls were included. The pooled odds ratio of PLCE1 rs2274223 genotype GA vs AA was 1.29 (95%CI=1.17~1.43), p<0.01, GG vs AA was 1.65 (95%CI=1.32~2.05), p<0.01, GG/GA vs AA was 1.30 (95%CI=1.16~1.46), p<0.01 and GG vs GA/AA was 1.48 (95%CI=1.22~1.80), p<0.01. The PLCE1 rs2274223 polymorphism was thus associated with risk of esophageal cancer in all genetic models. In the stratified analysis by ethnicity, and source of controls, no significantly increased risk was observed for white persons. There was no obvious publication bias detected. Conclusions: This meta-analysis showed there was a significantly association between PLCE1 rs2274223 polymorphism and esophageal cancer in yellow race populations. Due to some minor limitations, our findings should be confirmed in further studies.

Association of Single Nucleotide Polymorphism rs1053004 in Signal Transducer and Activator of Transcription 3 (STAT3) with Susceptibility to Hepatocellular Carcinoma in Thai Patients with Chronic Hepatitis B

  • Chanthra, Nawin;Payungporn, Sunchai;Chuaypen, Natthaya;Pinjaroen, Nutcha;Poovorawan, Yong;Tangkijvanich, Pisit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5069-5073
    • /
    • 2015
  • The single nucleotide polymorphism (SNP) rs1053004 in Signal transducer and activator of transcription 3 (STAT3) was recently reported to be associated with chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC) in a Chinese cohort. This study was aimed at investigating whether the SNP might also contribute to HCC susceptibility in the Thai population. Study subjects were enrolled and divided into 3 groups including CHB-related HCC (n=211), CHB without HCC (n=233) and healthy controls (n=206). The SNP was genotyped using allelic discrimination assays based on TaqMan real-time PCR. Data analysis revealed that the distribution of different genotypes was in Hardy-Weinberg equilibrium (P>0.05). The frequencies of allele T (major allele) in HCC patients, CHB patients and healthy controls were 51.4%, 58.6% and 61.4%, respectively, whereas the frequencies of C allele (minor allele) were 48.6%, 41.4% and 38.6%. The C allele frequency was higher in HCC when compared with CHB patients (odds ratio (OR)=1.34, 95% confidence interval (CI)=1.02-1.74, P=0.032). The genotype of SNP rs1053004 (CC versus TT+TC) was significantly associated with an increased risk when compared with CHB patients (OR=1.83, 95% CI=1.13-2.99, P=0.015). In addition, we observed a similar trend of association when comparing HCC patients with healthy controls (OR=1.77, 95% CI=1.07-2.93, P=0.025) and all controls (OR=1.81, 95% CI=1.19-2.74, P=0.005). These findings suggest that the SNP rs1053004 in STAT3 might contribute to HCC susceptibility and could be used as a genetic marker for HCC in the Thai population.

Pin1 Promoter rs2233678 and rs2233679 Polymorphisms in Cancer: A Meta-analysis

  • Zhu, Yan-Mei;Liu, Jing-Wei;Xu, Qian;Yuan, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5965-5972
    • /
    • 2013
  • PIN1 is one member of the parvulin PPIase family. By controlling Pro-directed phosphorylation, PIN1 plays an important role in cell transformation and oncogenesis. There are many polymorphisms in the PIN1 gene, including rs2233678 and rs2233679 affecting the PIN1 promoter. Recently, a number of case-control studies were conducted to investigate the association between PIN1 gene rs2233678 and rs2233679 polymorphism and cancer risk. However, published data are still conflicting. In this paper, we summarized data for 5,427 cancer cases and 5,469 controls from 9 studies and attempted to assess the susceptibility of PIN1 gene polymorphism to cancers by a synthetic meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the relationship. All analyses were performed using Stata software. Our results suggested that rs2233678 represented a protective factor in overall analysis (CC vs GG: OR= 0.697, 95%CI: 0.498-0.976; CG vs GG: OR=0.701, 95%CI: 0.572-0.858; Dominant model: OR= 0.707, 95%CI: 0.590-0.847; C allele vs G allele: OR=0.734, 95%CI: 0.623-0.867) and especially for squamous cell carcinoma of the head and neck, lung cancer and breast cancer in Asians and Caucasians. The rs2233679 polymorphism was significantly associated with decreased cancer risk in overall analysis (CT vs CC: OR=0.893, 95%CI=0.812-0.981; Dominant model: OR=0.893, 95%CI=0.816-0.976; T allele vs C allele; OR=0.947, 95%CI=0.896-1.000) and especially in Asians. In conclusion, our meta-analysis suggested that -842G>C (rs2233678) and -667C>T (rs2233679) may contribute to genetic susceptibility for cancer risks. Further prospective research with larger numbers of worldwide participants is warranted to draw comprehensive and firm conclusions.

P53 Arg72Pro Polymorphism and Bladder Cancer Risk - Meta-analysis Evidence for a Link in Asians but not Caucasians

  • Xu, Ting;Xu, Zi-Cheng;Zou, Qin;Yu, Bin;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2349-2354
    • /
    • 2012
  • Objective: Individual studies of the associations between P53 codon 72 polymorphism (rs1042522) and bladder cancer susceptibility have shown inconclusive results. To derive a more precise estimation of the relationship, we performed this systemic review and meta-analysis based on 15 publications. Methods: We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Results: We found that there was no association between P53 codon 72 polymorphism and bladder cancer risk in the comparisons of Pro/Pro vs Arg/Arg; Pro/Arg vs. Arg/Arg; Pro/Pro plus Pro/Arg vs. Arg/Arg; Arg/Arg vs. Pro/Arg plus Arg/Arg (OR=1.06 95%CI 0.81-1.39; OR=1.06 95%CI 0.83-1.36; OR=0.98 95%CI 0.78-1.23; OR=1.06 95%CI 0.84-1.32). However, a significantly increased risk of bladder cancer was found among Asians in the homozygote comparison (Pro/Pro vs. Arg/Arg, OR=1.36 95%CI 1.05-1.75, P=0.790 for heterogeneity) and the dominant model (Arg/Pro plus Pro/Pro vs. Arg/Arg, OR=1.26 95%CI 1.05-1.52, P=0.564 for heterogeneity). In contrast, no evidence of an association between bladder cancer risk and P53 genotype was observed among Caucasian population in any genetic model. When stratifying for the stage of bladder, no statistical association were found (Pro/Pro vs. Arg/Arg, OR=0.45 95%CI 0.17-1.21; Pro/Arg vs. Arg/Arg, OR=0.60 95%CI 0.28-1.27; Dominant model, OR=0.56 95%CI 0.26-1.20; Recessive model, OR=0.62 95%CI0.35-1.08) between P53 codon 72 polymorphism and bladder cancer in all comparisons. Conclusions: Despite the limitations, the results of the present meta-analysis suggest that, in the P53 codon 72, Pro/Pro type and dominant mode might increase the susceptibility to bladder cancer in Asians; and there are no association between genotype distribution and the stage of bladder cancer.

Characterization of Rice Mutants with Enhanced Susceptibility to Rice Blast

  • Kim, Hye-Kyung;Lee, Sang-Kyu;Cho, Jung-Il;Lee, Sichul;An, Gynheung;Jwa, Nam-Soo;Kim, Byung-Ryun;Cho, Young-Chan;Han, Seong-Sook;Bhoo, Seong-Hee;Lee, Youn-Hyung;Hong, Yeon-Kyu;Yi, Gihwan;Park, Dae-Sup;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.385-391
    • /
    • 2005
  • As a first step towards identifying genes involving in the signal transduction pathways mediating rice blast resistance, we isolated 3 mutants lines that showed enhanced susceptibility to rice blast KJ105 (91-033) from a T-DNA insertion library of the japonica rice cultivar, Hwayeong. Since none of the susceptible phenotypes co-segregated with the T-DNA insertion we adapted a map-based cloning strategy to isolate the gene(s) responsible for the enhanced susceptibility of the Hwayeong mutants. A genetic mapping population was produced by crossing the resistant wild type Hwayeong with the susceptible cultivar, Nagdong. Chi-square analysis of the $F_2$ segregating population indicated that resistance in Hwayeong was controlled by a single major gene that we tentatively named Pi-hy. Randomly selected susceptible plants in the $F_2$ population were used to build an initial map of Pi-hy. The SSLP marker RM2265 on chromosome 2 was closely linked to resistance. High resolution mapping using 105 $F_2$ plants revealed that the resistance gene was tightly linked, or identical, to Pib, a resistance gene with a nucleotide binding sequence and leucine-rich repeats (NB-LRR) previously isolated. Sequence analysis of the Pib locus amplified from three susceptible mutants revealed lesions within this gene, demonstrating that the Pi-hy gene is Pib. The Pib mutations in 1D-22-10-13, 1D-54-16-8, and 1C-143-16-1 were, respectively, a missense mutation in the conserved NB domain 3, a nonsense mutation in the 5th LRR, and a nonsense mutation in the C terminus following the LRRs that causes a small deletion of the C terminus. These findings provide evidence that NB domain 3 and the C terminus are required for full activity of the plant R gene. They also suggest that alterations of the resistance gene can cause major differences in pathogen specificity by affecting interactions with an avirulence factor.