Browse > Article

Characterization of Rice Mutants with Enhanced Susceptibility to Rice Blast  

Kim, Hye-Kyung (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Lee, Sang-Kyu (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Cho, Jung-Il (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Lee, Sichul (Pohang University of Science and Technology)
An, Gynheung (Pohang University of Science and Technology)
Jwa, Nam-Soo (Department of Molecular Biology, College of Natural Science, Sejong University)
Kim, Byung-Ryun (National Institute of Crop Sciences, Rural Development Administration)
Cho, Young-Chan (National Institute of Crop Sciences, Rural Development Administration)
Han, Seong-Sook (National Institute of Crop Sciences, Rural Development Administration)
Bhoo, Seong-Hee (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Lee, Youn-Hyung (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Hong, Yeon-Kyu (Yeongnam Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration)
Yi, Gihwan (Yeongnam Agricultural Research Institute, National Institute of Crop Science, Rural Development Administration)
Park, Dae-Sup (Turf & Environment Research Institute, Samsung Everland Inc.)
Hahn, Tae-Ryong (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Jeon, Jong-Seong (Plant Metabolism Research Center and Graduate School of Biotechnology, Kyung Hee University)
Abstract
As a first step towards identifying genes involving in the signal transduction pathways mediating rice blast resistance, we isolated 3 mutants lines that showed enhanced susceptibility to rice blast KJ105 (91-033) from a T-DNA insertion library of the japonica rice cultivar, Hwayeong. Since none of the susceptible phenotypes co-segregated with the T-DNA insertion we adapted a map-based cloning strategy to isolate the gene(s) responsible for the enhanced susceptibility of the Hwayeong mutants. A genetic mapping population was produced by crossing the resistant wild type Hwayeong with the susceptible cultivar, Nagdong. Chi-square analysis of the $F_2$ segregating population indicated that resistance in Hwayeong was controlled by a single major gene that we tentatively named Pi-hy. Randomly selected susceptible plants in the $F_2$ population were used to build an initial map of Pi-hy. The SSLP marker RM2265 on chromosome 2 was closely linked to resistance. High resolution mapping using 105 $F_2$ plants revealed that the resistance gene was tightly linked, or identical, to Pib, a resistance gene with a nucleotide binding sequence and leucine-rich repeats (NB-LRR) previously isolated. Sequence analysis of the Pib locus amplified from three susceptible mutants revealed lesions within this gene, demonstrating that the Pi-hy gene is Pib. The Pib mutations in 1D-22-10-13, 1D-54-16-8, and 1C-143-16-1 were, respectively, a missense mutation in the conserved NB domain 3, a nonsense mutation in the 5th LRR, and a nonsense mutation in the C terminus following the LRRs that causes a small deletion of the C terminus. These findings provide evidence that NB domain 3 and the C terminus are required for full activity of the plant R gene. They also suggest that alterations of the resistance gene can cause major differences in pathogen specificity by affecting interactions with an avirulence factor.
Keywords
Blast Resistance; Hwayeong; NB-LRR; Rice; Pib Mutation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S. P. (1997) Signaling in plant-microbe interactions. Science 276, 726-733   DOI   ScienceOn
2 Bell, C. J. and Ecker, J. R. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137-144   DOI   ScienceOn
3 Eulgem, T. (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 10, 71-88   DOI   ScienceOn
4 Flor, H. H. (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275-296   DOI   ScienceOn
5 Hammond-Kosack, K. E. and Parker, J. E. (2003) Deciphering plant-pathogen communication, Fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 14, 177-193   DOI   ScienceOn
6 Jeon, J. S., Chen, D., Yi, G. H., Wang, G. L., and Ronald, P. C. (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Genet. Genom. 269, 280-289
7 Kobe, B. and Deisenhofer, J. (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183-186   DOI   ScienceOn
8 Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., et al. (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19, 55-64   DOI   ScienceOn
9 Shirano, Y., Kachroo, P., Shah, J., and Klessig, D. F. (2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14, 3149-3162   DOI
10 Chu, Z., Ouyang, Y., Zhang, J., Yang, H., and Wang, S. (2004) Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Mol. Genet. Genom. 271, 111-120   DOI
11 Chen, D. H., Zeigler, R. S., Ahn, S. W., and Nelson, R. J. (1996) Phenotypic characterization of the rice blast resistance gene Pi2(t). Plant Dis. 80, 52-56   DOI
12 Tabien, E., Li, Z., Paterson, H., Marchetti, A., Stansel, W., et al. (2002) Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor. Appl. Genet. 105, 313-324   DOI
13 Hammond-Kosack, K. E. and Jones, J. D. G. (1997) Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 575-607   DOI
14 Keen, N. T. (1990) Gene-for-gene complementarity in plantpathogen interactions. Annu. Rev. Genet. 24, 447-463   DOI   ScienceOn
15 Bai, J., Pennill, L. A., Ning, J., Lee, S. W., Ramalingam, J., et al. (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res. 12, 1871-1884   DOI   ScienceOn
16 Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., et al. (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435, 1122-1125   DOI   ScienceOn
17 Martin, G. B., Bogdanove, A. J., and Sessa, G. (2003) Understanding the functions of plant disease resistance proteins. Annu. Rev. Plant Biol. 54, 23-61   DOI
18 Chen, D. H. and Ronald, P. C. (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17, 53-57   DOI   ScienceOn
19 Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A., et al. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 100, 15253-15258
20 Somssich, I. E. and Halbrock, K. (1998) Pathogen defense in plants a paradigm of biological complexity. Trends Plant Sci. 3, 86-90   DOI   ScienceOn
21 Meyers, B. C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R. W. (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809-834   DOI
22 Veronese, P. (2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol. 131, 1580-1590   DOI   ScienceOn
23 Yi, G., Lee, S. K., Hong, Y. K., Cho, Y. C., Nam, M. H., et al. (2004) Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor. Appl. Genet. 109, 978-985   DOI
24 McCouch, S. R., Chen, X., Panaud, O., Temnykh, S., Xu, Y., et al. (1997) Microsatellite marker development, mapping and applications in rice. Plant Mol. Biol. 35, 89-99   DOI   ScienceOn
25 Panaud, O., Chen, X., and McCouch, S. R. (1995) Frequency of microsatellite sequences in rice (Oryza sativa L). Genome 38, 1170-1176   DOI
26 Jiang, J. and Wang, S. (2002) Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice. Mol. Genet. Genom. 268, 249-252   DOI
27 Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G. (1995) Molecular genetics of plant disease resistance. Science 268, 661-667   DOI   ScienceOn
28 Ware, D. H., Jaiswal, P., Ni, J., Yap, I. V., Pan, X., et al. (2002) Gramene, a tool for grass genomics. Plant Physiol. 130, 1606-1613   DOI   ScienceOn
29 DeClerck, G., Schneider, D., Cartinhour, S., Ware, D., and Stein, L. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 257-279   DOI
30 Dangl, J. L. and Jones, J. D. G. (2001) Plant pathogens and integrated defense responses to infection. Nature 411, 826-833   DOI   ScienceOn
31 Takken, F. L. W. and Joosten, M. A. H. J. (2000) Plant resistance genes, their structure, function and evolution. Eur. J. Plant Pathol. 106, 699-713   DOI   ScienceOn
32 Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., et al. (2000) tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12, 2033-2046   DOI
33 Allen, R. L., Bittner-Eddy, P. D., Grenville-Briggs, L. J., Meitz, J. C., Rehmany, A. P., et al. (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306, 1957-1960   DOI   ScienceOn
34 Kobe, B. and Kajava, A. V. (2001) The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725-732   DOI   ScienceOn
35 Traut, T. W. (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide- binding sites. Eur. J. Biochem. 222, 9-19   DOI   ScienceOn
36 Chauhan, R. S., Farman, M. L., Zhang, H. B., and Leong, S. A. (2002) Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genom. 267, 603-612   DOI
37 Jones, D. A. and Jones, J. D. G. (1997) The role of leucine-rich repeat proteins in plant defences. Adv. Bot. Res. 24, 91-167
38 Saraste, M., Sibbad, P. R., and Wittinghofer, A. (1990) The Ploop- a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-434   DOI   ScienceOn
39 An, S., Park, S., Jeong, D. H., Lee, D. Y., Kang, H. G., et al. (2003) Generation and analyses of end-sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047   DOI   ScienceOn
40 Dinesh-Kumar, S. P., Tham, W.-H., and Baker, B. J. (2000) Structure- function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA 97, 14789-14794
41 Bonas, U. and Lahaye, T. (2002) Plant disease resistance triggered by pathogen-derived molecules, refined models of specific recognition. Curr. Opin. Microbiol. 5, 44-50   DOI   ScienceOn
42 Bonman, J. M. (1992) Durable resistance to rice blast diseaseenvironmental influences. Euphytica 63, 115-123   DOI
43 Eckardt, N. A. and Innes, R. (2003) Resistance rodeo, rounding up the full complement of Arabidopsis NBS-LRR genes. Plant Cell 15, 806-?807   DOI
44 McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., et al. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 199-207   DOI
45 Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., et al. (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843-846   DOI   ScienceOn
46 Tao, Y., Yuan, F., Leister, R. T., Ausubel, F. M., and Katagiri, F. (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12, 2541-2554   DOI
47 Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Jeong, D. H., et al. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570   DOI   ScienceOn
48 Fujino, K., Sekiguchi, H., Sato, T., Kiuchi, H., Nonoue, Y., et al. (2004) Mapping of quantitative trait loci controlling lowtemperature germinability in rice (Oryza sativa L.). Theor. Appl. Genet. 108, 794-799   DOI
49 Han, C. U., Lee, C. H., Jang, K. S., Choi, G. J., Lim, H. K., et al. (2004) Identification of rice genes induced in a rice blastresistant mutant. Mol. Cells 17, 462-468
50 Katayose, Y. and Sasaki, T. (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19, 55- 64   DOI   ScienceOn