• Title/Summary/Keyword: Genetic population

Search Result 2,231, Processing Time 0.033 seconds

Variation in Demography of Taraxacum officinale Seeds Harvested from Different Seasons

  • Yang, Hyo-Sik;Oh, Man-Ho
    • The Korean Journal of Ecology
    • /
    • v.26 no.2
    • /
    • pp.82-86
    • /
    • 2003
  • We investigated the variation in adaptation to growth for four ecotypically-differentiated population of Taraxacum officinale found naturally in temporal environmental heterogeneity. Seeds collected from the four seasons were germinated in incubators and were grown for four months in greenhouse to test genetic variation among biotypes. Biotypes, segregated by seeds collected seasonally, were the part of natural population in Mokpo, South Korea. Each biotype was different in total dry weight of seeds, biomass, and leaf area, confirming previous finding. Differences between biotypes grown under a common environment indicated a genetic basis to their distinct demographic rates. Therefore, biotypes with similar annual rates of growth and contrasting seasonal rates should persist in the population. This differential response suggests that temporal variation in environment may be responsible, in part, for the maintenance of genetic variation within populations.

New Search Strategy in Sexual Reproduction Genetic Algorithms Using Cache Pool (캐시풀을 이용한 유성생식 유전알고리즘의 새로운 탐색전략)

  • Ryu, Keun-Bae;Kim, Chang-Eob;Lee, Hahk-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1401-1403
    • /
    • 1996
  • A new method is proposed for tracking the optimum points in nonstationary problem via genetic search. Cache Pool to save the past genetic informations is added to population in search using Sexual Reproduction Genetic Algorithm(SRGA). In Cache Pool, elite chromosomes from population are accumulated. A best Individual is made up from these chromosomes in varying environment and inserted into the newly reproduced population every generation. Experimental results indicate changing global optima are accurately identified and followed.

  • PDF

Identification of loci affecting teat number by genome-wide association studies on three pig populations

  • Tang, Jianhong;Zhang, Zhiyan;Yang, Bin;Guo, Yuanmei;Ai, Huashui;Long, Yi;Su, Ying;Cui, Leilei;Zhou, Liyu;Wang, Xiaopeng;Zhang, Hui;Wang, Chengbin;Ren, Jun;Huang, Lusheng;Ding, Nengshui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Objective: Three genome-wide association studies (GWAS) and a meta-analysis of GWAS were conducted to explore the genetic mechanisms underlying variation in pig teat number. Methods: We performed three GWAS and a meta-analysis for teat number on three pig populations, including a White Duroc${\times}$Erhualian $F_2$ resource population (n = 1,743), a Chinese Erhualian pig population (n = 320) and a Chinese Sutai pig population (n = 383). Results: We detected 24 single nucleotide polymorphisms (SNPs) that surpassed the genome-wide significant level on Sus Scrofa chromosomes (SSC) 1, 7, and 12 in the $F_2$ resource population, corresponding to four loci for pig teat number. We highlighted vertnin (VRTN) and lysine demethylase 6B (KDM6B) as two interesting candidate genes at the loci on SSC7 and SSC12. No significant associated SNPs were identified in the meta-analysis of GWAS. Conclusion: The results verified the complex genetic architecture of pig teat number. The causative variants for teat number may be different in the three populations

Genetic diversity and population structure of indigenous chicken of Bangladesh using microsatellite markers

  • Rashid, Muhammad Abdur;Manjula, Prabuddha;Faruque, Shakila;Bhuiyan, A.K. Fazlul Haque;Seo, Dongwon;Alam, Jahangir;Lee, Jun Heon;Bhuiyan, Mohammad Shamsul Alam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1732-1740
    • /
    • 2020
  • Objective: The objectives of this study were to investigate the genetic diversity, population structure and relatedness among the five chicken populations of Bangladesh using microsatellite markers. Methods: A total of 161 individuals representing 5 chicken populations (non-descript Deshi [ND], naked neck [NN], hilly [HI], Aseel [AS], and red jungle fowl [JF]) were included in this study to investigate genetic diversity measures, population structure, genetic distance and phylogenetic relationships. Genotyping was performed using 16 selected polymorphic microsatellite markers distributed across 10 chromosomes. Results: The average observed and expected heterozygosity, mean number of alleles and polymorphic information content were found to be 0.67±0.01, 0.70±0.01, 10.7 and 0.748, respectively in the studied populations. The estimated overall fixation index across the loci (F), heterozygote deficiency within (FIS) and among (FIT) chicken populations were 0.04±0.02, 0.05 and 0.16, respectively. Analysis of molecular variance analysis revealed 88.07% of the total genetic diversity was accounted for within population variation and the rest 11.93% was incurred with population differentiation (FST). The highest pairwise genetic distance (0.154) was found between ND and AS while the lowest distance was between JF and AS (0.084). Structure analysis depicted that the studied samples can be categorized into four distinct types or varieties (ΔK = 3.74) such as ND, NN, and HI where AS and JF clustered together as an admixed population. The Neighbor-Joining phylogenetic tree and discriminant analysis of principal component also showed close relatedness among three chicken varieties namely AS, HI, and JF. Conclusion: The results reflected that indigenous chicken of Bangladesh still possess rich genetic diversity but weak differentiation among the studied populations. This finding provides some important insight on genetic diversity measures that could support the designing and implementing of future breeding plans for indigenous chickens of Bangladesh.

Genetic Diversity and Population Structure of Liriope platyphylla (Liliaceae) in Korea (한국내 맥문동의 유전적 다양성과 집단 구조)

  • Huh, Hong-Wook;Choi, Joo-Soo;Lee, Bok-Kyu;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.328-333
    • /
    • 2007
  • Genetic diversity and population structure of eleven Liriope platyphylla (Liliaceae) populations in Korea were determined using genetic variation at 20 allozyme loci. The percent of polymorphic loci within the enzymes was 55.9%. Genetic diversity at the species level and at the population level was high(Hes = 0.178; Hep = 0.168, respectively), whereas the extent of the population divergence was relatively low ($G_{ST}$ = 0.064). $F_{IS}$, a measure of the deviation from random mating within the 11 populations, was 0.311. Total genetic diversity values ($H_T$) varied between 0.0 and 0.535, giving an average over all polymorphic loci of 0.323. The interlocus variation in within population genetic diversity ($H_S$) was high (0.305). An indirect estimate of the number of migrants per generation (Nm = 3.66) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. Mean genetic identity between populations was 0.988. It is highly probable that directional toward genetic uniformity in a relatively the homogenous habitat is thought to be operated among Korean populations of L. platyphylla.

Pelagic larval dispersal habits influence the population genetic structure of clam Gomphina aequilatera in China

  • Ye, Yingying;Fu, Zeqin;Tian, Yunfang;Li, Jiji;Guo, Baoying;Lv, Zhenming;Wu, Changwen
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1213-1223
    • /
    • 2018
  • Pelagic larval dispersal habits influence the population genetic structure of marine mollusk organisms via gene flow. The genetic information of the clam Gomphina aequilatera (short larval stage, 10 days) which is ecologically and economically important in the China coast is unknown. To determine the influence of planktonic larval duration on the genetic structure of G. aequilatera. Mitochondrial markers, cytochrome oxidase subunit i (COI) and 12S ribosomal RNA (12S rRNA), were used to investigate the population structure of wild G. aequilatera specimens from four China Sea coastal locations (Zhoushan, Nanji Island, Zhangpu and Beihai). Partial COI (685 bp) and 12S rRNA (350 bp) sequences were determined. High level and significant $F_{ST}$ values were obtained among the different localities, based on either COI ($F_{ST}=0.100-0.444$, P<0.05) or 12S rRNA ($F_{ST}=0.193-0.742$, P<0.05), indicating a high degree of genetic differentiation among the populations. The pairwise $N_m$ between Beihai and Zhoushan for COI was 0.626 and the other four pairwise $N_m$ values were >1, indicating extensive gene flow among them. The 12S rRNA showed the same pattern. AMOVA test results for COI and 12S rRNA indicated major genetic variation within the populations: 77.96% within and 22.04% among the populations for COI, 55.73% within and 44.27% among the populations for 12S rRNA. A median-joining network suggested obvious genetic differentiation between the Zhoushan and Beihai populations. This study revealed the extant population genetic structure of G. aequilatera and showed a strong population structure in a species with a short planktonic larval stage.

Genetic Variation and Population Structure of the Slender Bitterling Acheilognathus lanceolatus of Korea and Japan as Assessed by Amplified Fragment Length Polymorphism (AFLP) Analysis (AFLP 분석에 의한 한국과 일본의 납자루 Acheilognathus lanceolatus의 유전 변이와 집단 구조)

  • Yun, Young-Eun;Kim, Chi-Hong;Kim, Keun-Yong;Ishinabe, Toshihiro;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Genetic variation and population structure of the slender bitterling Acheilognathus lanceolatus of Korea (the Han, Geum, Dongjin, Seomjin and Nakdong Rivers) and Japan (the Katsura River) were assessed by amplified fragment length polymorphism (AFLP) analysis. Five combinations of selective primers generated 345~374 DNA fragments, of which 55~131 were polymorphic. The Nakdong River population had the highest genetic diversity and the Han River population had the lowest genetic diversity. Dendrogram based on the distance matrix revealed that individuals from each population consistently clustered together and bifurcated into two distinct clades (or population groups) composed of the Han, Geum, Dongjin and Seomjin River populations and of the Nakdong and Katsura River populations, supported with high bootstrap values. The pairwise genetic differentiation ($F_{ST}$) estimates showed that the six populations were genetically well differentiated (P<0.01). The analysis of molecular variance (AMOVA) after partitioning the six populations into two population groups revealed very strong biogeographic structuring between them with 25.49% of total variance (P<0.01). Taken together, the AFLP markers clearly divided six A. lanceolatus populations into two population groups.

Amplified fragment length polymorphism analysis and genetic variation of the pinewood nematode Bursaphelenchus xylophilus in South Korea

  • Jung, Jong-Woo;Han, Hye-Rim;Ryu, Sung-Hee;Kim, Won
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The pinewood nematode Bursaphelenchus xylophilus causes pine wilt disease and is a serious economic concern for the forest industry of South Korea. To achieve effective control with limited resources, it is necessary to clarify the transmission routes and mechanisms of dispersal of this organism. Highly polymorphic and easy-to-use molecular markers can be used for investigating this aspect. In this study, we evaluated the usefulness of amplified fragment length polymorphisms (AFLPs) for investigating the genetic variations of B. xylophilus and related individuals from China, Japan, and South Korea. The AFLP patterns obtained in our study were similar to the microsatellite patterns reported in a previous study; our AFLP patterns indicated high genetic variability and cryptic genetic structure, but did not indicate any peculiar geographic structure. Moreover, the genetic distances between individuals suggested that the Korean population was affected to a greater extent by the Chinese population than the Japanese population. Further, the gene flow among the related species appeared to be limited; however, there may be also the possibility of genetic introgression among species. These results confirm the usefulness of AFLPs for understanding the epidemiology of pine wilt disease, thereby contributing to the effective control of this disease.

Analysis of the Genetic Diversity and Population Structure of Amaranth Accessions from South America Using 14 SSR Markers

  • Oo, Win Htet;Park, Yong-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.336-346
    • /
    • 2013
  • Amaranth (Amaranthus sp. L.) is an important group of plants that includes grain, vegetable, and ornamental types. Centers of diversity for Amaranths are Central and South America, India, and South East Asia, with secondary centers of diversity in West and East Africa. The present study was performed to determine the genetic diversity and population structure of 75 amaranth accessions: 65 from South America and 10 from South Asia as controls using 14 SSR markers. Ninety-nine alleles were detected at an average of seven alleles per SSR locus. Model-based structure analysis revealed the presence of two subpopulations and 3 admixtures, which was consistent with clustering based on the genetic distance. The average major allele frequency and polymorphic information content (PIC) were 0.42 and 0.39, respectively. According to the model-based structure analysis based on genetic distance, 75 accessions (96%) were classified into two clusters, and only three accessions (4%) were admixtures. Cluster 1 had a higher allele number and PIC values than Cluster 2. Model-based structure analysis revealed the presence of two subpopulations and three admixtures in the 75 accessions. The results of this study provide effective information for future germplasm conservation and improvement programs in Amaranthus.

Diversity in Six Goat Populations in the Middle and Lower Yangtze River Valley

  • Jiang, X.P.;Liu, G.Q.;Ding, J.T.;Yang, L.G.;Cao, S.X.;Cheng, S.O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.277-281
    • /
    • 2003
  • Amplified fragment length polymorphism (AFLPs) markers were used to investigate the genetic variation in six autochthonous goat populations distributed in the middle and lower Yangtze River valley. The goat populations were Chengdu Grey Goat (CGG), Chuandong White Goat (CWG), Banjiao Goat (BG), Matou Goat (MG), Hui Goat (HG) and Yangtze River Delta White Goat (YRDWG). A total of 180 individuals (30 per population) were analysed using ten selected AFLP primer combinations that produced 78 clear polymorphism loci. The variability at AFLP loci was largely maintained within populations, as indicated by the average genetic similarity, and they were ranged from 0.745 to 0.758 within populations and 0.951 to 0.970 between populations. No breed specific markers were identified. Cluster analysis based on Nei' genetic distance between populations indicated that Chengdu Grey Goat is the most distant population, while CWG and YROWG were the closest populations, followed by BG, HG and MG. Genetic diversity of the goat populations didn' confirm what was expected on the basis of their geographical location, which may reflect undocumented migrations and gene flows and identify an original genetic resource.