• Title/Summary/Keyword: Genetic parameters

Search Result 1,520, Processing Time 0.037 seconds

Recognition of Thyroid Gland Cancer Cells using Fuzzy Logic and Genetic Algorithms (퍼지 논리와 유전 알고리듬을 이용한 갑상선 암세포의 인식)

  • 나철훈
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.217-222
    • /
    • 2001
  • This paper proposes the new method based on fuzzy logic which recognizes between normal, and abnormal(two types of abnormal : follicular neoplastic, and papillary neoplastic) of thyroid gland cells from pre-obtained 16 feature parameters of image data. This paper applies the genetic algorithms to obtain the dominant feature parameters which have a great influence on discrimination between normal and abnormal cells. This paper shows the effectiveness of proposed method to 240 thyroid gland cells(60 normal cells, 120 follicular neoplastic cells and 60 papillary neoplastic cells) and new dominant feature parameters obtained by genetic algorithms. As a consequence of using the proposed method, average recognition rate of 88.75 % was obtained.

  • PDF

Speed Control System for Marine Diesel Engine Using Genetic Algorithm

  • So, Myung-Ok;Oh, Sea-June;Lee, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.237-242
    • /
    • 2004
  • The conventional PID controller has been widely used in many industrial control systems although modern control theory has been remarkably developed recently. Because engineer can easily understand how to deal with the PID controller which consists of three parameters. This PID control method, however. has a tendency to depend on experience. Genetic Algorithm can search the control parameters according to systematic procedure in a selected plant. In this paper the real coded genetic algorithm is used to search proper values of the PID controller parameters for marine diesel engine. Simulation results show the effectiveness of the proposed scheme.

A Transmission Parameter Optimization Scheme Based on Genetic Algorithm for Dynamic Spectrum Access (동적 스펙트럼 접근을 위한 유전자 알고리즘 기반 전송 매개변수 최적화 기법)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.938-943
    • /
    • 2013
  • In this paper, we propose a transmission parameter optimization scheme based on genetic algorithm for dynamic spectrum access systems. Specifically, we represent a multiple objective fitness function as a weighted sum of single objective fitness functions to optimize transmission parameters, and then, obtain optimized transmission parameters based on genetic algorithm for given transmission scenarios. From numerical results, we confirm that the transmission parameters are well optimized by using the proposed optimization scheme.

Automatic Gait Generation for Quadruped Robot Using a GP Based Evolutionary Method in Joint Space (관절 공간에서의 GP 기반 진화기법을 이용한 4족 보행로봇의 걸음새 자동생성)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.573-579
    • /
    • 2008
  • This paper introduces a new approach to develop a fast gait for quadruped robot using GP(genetic programming). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Several recent approaches have focused on using GA(genetic algorithm) to generate gait automatically and shown significant improvement over previous results. Most of current GA based approaches used pre-selected parameters, but it is difficult to select the appropriate parameters for the optimization of gait. To overcome these problems, we proposed an efficient approach which optimizes joint angle trajectories using genetic programming. Our GP based method has obtained much better results than GA based approaches for experiments of Sony AIBO ERS-7 in Webots environment.

A Study on the Parameters Tuning Method of the Fuzzy Power System Stabilizer Using Genetic Algorithm and Simulated Annealing (혼합형 유전 알고리즘을 이용한 퍼지 안정화 제어기의 계수동조 기법에 관한 연구)

  • Lee, Heung-Jae;Im, Chan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.589-594
    • /
    • 2000
  • The fuzzy controllers have been applied to the power system stabilizer due to its excellent properties on the nonlinear systems. But the design process of fuzzy controller requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This process is time consuming task. This paper presents an parameters tuning method of the fuzzy power system stabilizer using the genetic algorithm and simulated annealing(SA). The proposed method searches the local minimum point using the simulated annealing algorithm. The proposed method is applied to the one-machine infinite-bus of a power system. Through the comparative simulation with conventional stabilizer and fuzzy stabilizer tuned by genetic algorithm under various operating conditions and system parameters, the robustness of fuzzy stabilizer tuned by proposed method with respect to the nonlinear power system is verified.

  • PDF

Optimization of control parameters for speed control of a hydraulic motor using genetic algorithms (유전알리고즘을 이용한 유압모터의 속도제어파라메터 최적화)

  • Hyun, Jang-Hwan;Ahn, Chul-Hyun;Lee, Chung-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.139-145
    • /
    • 1997
  • This study is concerned with the optimizing method of control parameters for a hydraulic speed control system by using genetic algorithms which are general purpose search algorithms based on natural evolution and genetics. It is shown that the genetic altorithms satisfactorily oiptimized control gains of the PI speed control system of an electrohydraulic servomotor and that optimization of control para- meters can be achived without much experience and knowledge for tuning. It is also shown that optimal gains may be determined from fitness distribution curves plotted in given gain spaces.

  • PDF

Maternal and Direct Genetic Parameters for Production Traits and Maternal Correlations among Production and Feed Efficiency Traits in Duroc Pigs

  • Hoque, M.A.;Kadowaki, H.;Shibata, T.;Suzuki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.961-966
    • /
    • 2008
  • Direct and maternal genetic parameters for production traits in 1,642 pigs and maternal genetic correlations among production (1,642 pigs) and feed efficiency (380 boars) traits were estimated in 7 generations of a Duroc population. Traits studied were daily gain (DG), intramuscular fat (IMF), loineye area (LEA), backfat thickness (BF), daily feed intake (FI), feed conversion ratio (FCR) and residual feed intake (RFI). The RFI was calculated as the difference between actual and predicted feed intake. The predicted feed intake was estimated by adjusting the initial test weight, DG and BF. Data for production traits were analyzed using four alternative animal models (including direct, direct+maternal permanent environmental, or direct+maternal genetic+maternal permanent environmental effects). Direct heritability estimates from the model including direct and all maternal effects were $0.41{\pm}0.04$ for DG, $0.27{\pm}0.04$ for IMF, $0.52{\pm}0.06$ for LEA and $0.64{\pm}0.04$ for BF. Estimated maternal heritabilities ranged from $0.04{\pm}0.04$ to $0.15{\pm}0.05$ for production traits. Antagonistic relationships were observed between direct and maternal genetic effects ($r_{am}$) for LEA (-0.21). Maternal genetic correlations of feed efficiency traits with FI ($r_g$ of FI with FCR and RFI were $0.73{\pm}0.06$ and $0.90{\pm}0.05$, respectively) and LEA (rg of LEA with FCR and RFI were $-0.48{\pm}0.05$ to $-0.61{\pm}0.05$, respectively) were favorable. The estimated moderate genetic correlations between direct and maternal genetic effects for IMF and LEA indicated that maternal effects has an important role in these traits, and should be accounted for in the genetic evaluation system.

Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

  • Canaza-Cayo, Ali William;Lopes, Paulo Savio;da Silva, Marcos Vinicius Gualberto Barbosa;de Almeida Torres, Robledo;Martins, Marta Fonseca;Arbex, Wagner Antonio;Cobuci, Jaime Araujo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1407-1418
    • /
    • 2015
  • A total of 32,817 test-day milk yield (TDMY) records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM) using Legendre's polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield ($PS_i$) and the genetic trend of 305-day milk yield (305MY) were evaluated. The fit quality criteria used indicated RRM employing the Legendre's polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from -0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from -0.98 to 1.00, respectively. The use of $PS_7$ would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.

Statistical Genetic Studies on Cattle Breeding for Dairy Productivity in Bangladesh: I. Genetic Improvement for Milk Performance of Local Cattle Populations

  • Hossain, K.B.;Takayanagi, S.;Miyake, T.;Moriya, K.;Bhuiyan, A.K.F.H.;Sasaki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.627-632
    • /
    • 2002
  • Genetic parameters for dairy performance traits were estimated, breeding values for the traits of all breeding sires and cows were predicted and the genetic trends were estimated using the breeding values in the Central Cattle Breeding Station (CCBS). A total of 3,801 records for Bangladeshi Local, 756 records for Red Sindhi and 959 records for Sahiwal covering the period from 1961 to 1997 were used in this analysis. Traits considered were total milk production per lactation (TLP), lactation length (LL) and daily milk yield (DMY). The genetic parameters were estimated by the REML using MTDFREML program. The breeding values were predicted by a best linear unbiased prediction (BLUP). In all sets of data, the genetic trends for the dairy performance traits were computed as averages of breeding values for cows born in the particular year. The estimates of heritability for TLP (0.26 and 0.27) and DMY (0.28 and 0.27) were moderate in Bangladeshi local and Red Sindhi breed, respectively. Furthermore, the heritability estimate for LL (0.24) was moderate in Red Sindhi. The estimates of heritabilities for all traits were low in Sahiwal. The repeatability estimate was high for TLP, moderate for LL and moderate to high for DMY. All variances estimated in Bangladeshi Local were low, comparing the respective values estimated in both Red Sindhi and Sahiwal. On the other hand, additive genetic variances for the three traits were estimated very low in Sahiwal. The genetic trends for the three dairy production traits have not been positive except for the recent trend in Bangladeshi Local.

Genetic Parameters for Linear Type Traits and Milk, Fat, and Protein Production in Holstein Cows in Brazil

  • Campos, Rafael Viegas;Cobuci, Jaime Araujo;Kern, Elisandra Lurdes;Costa, Claudio Napolis;McManus, Concepta Margaret
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.476-484
    • /
    • 2015
  • The objective of this study was to estimate genetic and phenotypic parameters for linear type traits, as well as milk yield (MY), fat yield (FY) and protein yield (PY) in 18,831 Holstein cows reared in 495 herds in Brazil. Restricted maximum likelihood with a bivariate model was used for estimation genetic parameters, including fixed effects of herd-year of classification, period of classification, classifier and stage of lactation for linear type traits and herd-year of calving, season of calving and lactation order effects for production traits. The age of cow at calving was fitted as a covariate (with linear and quadratic terms), common to both models. Heritability estimates varied from 0.09 to 0.38 for linear type traits and from 0.17 to 0.24 for production traits, indicating sufficient genetic variability to achieve genetic gain through selection. In general, estimates of genetic correlations between type and production traits were low, except for udder texture and angularity that showed positive genetic correlations (>0.29) with MY, FY, and PY. Udder depth had the highest negative genetic correlation (-0.30) with production traits. Selection for final score, commonly used by farmers as a practical selection tool to improve type traits, does not lead to significant improvements in production traits, thus the use of selection indices that consider both sets of traits (production and type) seems to be the most adequate to carry out genetic selection of animals in the Brazilian herd.