• Title/Summary/Keyword: Genetic network

Search Result 1,144, Processing Time 0.024 seconds

Biogeography and Distribution Pattern of a Korean Wood-eating Cockroach Species, Cryptocercus kyebangensis, Based on Genetic Network Analysis and DNA Sequence Information

  • Park, Yung-Chul;Choe, Jae-Chun
    • Journal of Ecology and Environment
    • /
    • v.30 no.4
    • /
    • pp.331-340
    • /
    • 2007
  • We examined the evolutionary and ecological processes shaping current geographical distributions of a Korean wood-eating cockroach species, Cryptocercus kyebangensis. Our research aims were to understand evolutionary pattern of DNA sequences, to construct genetic network of Cryptocercus kyebangensis local populations and to understand evolutionary and ecological processes shaping their current geographical distribution patterns via DNA sequence information and genetic networks, using sequence data of two genes (ITS-2 and AT region) from local populations of C. kyebangensis. The results suggest that the ITS-2 and AT region are appropriate molecular markers for elucidating C. kyebangensis geographic patterns at the population level. The MSN-A based on the ITS-2 showed two possible routes, the Hwaak-san and Myeongji-san route and the Seorak-san and Gyebang-san route, for migration of ancestral C. kyebangensis into South Korea. The MSNs (MSN-A and -B) elucidate migration routes well within South Korea, especially the route of Group I and Group II.

Development of Genetic Algorithm for Robust Control of Mobile Robot (모바일 로봇의 견실제어를 위한 제네틱 알고리즘 개발)

  • 김홍래;배길호;정경규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • This paper proposed trajectory tracking control of mobile robot. Trajectory tracking control scheme are real coding genetic-algorithm and back-propergation algorithm. Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studios have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using Real coding Genetic Algorithm(RCGA) and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verify numerical simulations and the results show better performance than constant gain controller.

  • PDF

Fuzzy Rule Identification Using Messy Genetic Algorithm (메시 유전 알고리듬을 이용한 퍼지 규칙 동정)

  • Kwon, Oh-Kook;Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.252-256
    • /
    • 1997
  • The success of a fuzzy neural network(FNN) control system solving any given problem critically depends on the architecture of the network. Various attempts have been made in optimizing its structure using genetic algorithm automated designs. This paper presents a new approach to structurally optimized designs of FNN models. A messy genetic algorithm is used to obtain structurally optimized FNN models. Structural optimization is regarded important before neural networks based learning is switched into. We have applied the method to the problem of a numerical approximation

  • PDF

Structure Optimization of a Feedforward Neural Controller using the Genetic Algorithm (유전 알고리즘을 이용한 전방향 신경망 제어기의 구조 최적화)

  • 조철현;공성곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.95-105
    • /
    • 1996
  • This paper presents structure optimization of a feedforward neural netowrk controller using the genetic algorithm. It is important to design the neural network with minimum structure for fast response and learning. To minimize the structure of the feedforward neural network, a genralization of multilayer neural netowrks, the genetic algorithm uses binary coding for the structure and floating-point coding for weights. Local search with an on-line learnign algorithm enhances the search performance and reduce the time for global search of the genetic algorithm. The relative fitness defined as the multiplication of the error and node functions prevents from premature convergence. The feedforward neural controller of smaller size outperformed conventional multilayer perceptron network controller.

  • PDF

A study on the production and distribution problem in a supply chain network using genetic algorithm (Genetic algorithm을 이용한 supply chain network에서의 최적생산 분배에 관한 연구)

  • Lim Seok-jin;Jung Seok-jae;Kim Kyung-Sup;Park Myon-Woong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.262-269
    • /
    • 2003
  • Recently, a multi facility, multi product and multi period industrial problem has been widely investigated in Supply Chain Management (SCM). One of the key issues in the current SCM research area involved reducing both production and distribution costs. The purpose of this study is to determine the optimum quantity of production and transportation with minimum cost in the supply chain network. We have presented a mathematical model that deals with real world factors and constructs. Considering the complexity of solving such model, we have applied the genetic algorithm approach for solving this model computational experiments using a commercial genetic algorithm based optimizer. The results show that the real size problems we encountered can be solved In reasonable time

  • PDF

Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm (유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화)

  • 최재호;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF

Genetic algorithm-based content distribution strategy for F-RAN architectures

  • Li, Xujie;Wang, Ziya;Sun, Ying;Zhou, Siyuan;Xu, Yanli;Tan, Guoping
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.348-357
    • /
    • 2019
  • Fog radio access network (F-RAN) architectures provide markedly improved performance compared to conventional approaches. In this paper, an efficient genetic algorithm-based content distribution scheme is proposed that improves the throughput and reduces the transmission delay of a F-RAN. First, an F-RAN system model is presented that includes a certain number of randomly distributed fog access points (F-APs) that cache popular content from cloud and other sources. Second, the problem of efficient content distribution in F-RANs is described. Third, the details of the proposed optimal genetic algorithm-based content distribution scheme are presented. Finally, simulation results are presented that show the performance of the proposed algorithm rapidly approaches the optimal throughput. When compared with the performance of existing random and exhaustive algorithms, that of the proposed method is demonstrably superior.

Using Genetic Algorithm for Optimal Security Hardening in Risk Flow Attack Graph

  • Dai, Fangfang;Zheng, Kangfeng;Wu, Bin;Luo, Shoushan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1920-1937
    • /
    • 2015
  • Network environment has been under constant threat from both malicious attackers and inherent vulnerabilities of network infrastructure. Existence of such threats calls for exhaustive vulnerability analyzing to guarantee a secure system. However, due to the diversity of security hazards, analysts have to select from massive alternative hardening strategies, which is laborious and time-consuming. In this paper, we develop an approach to seek for possible hardening strategies and prioritize them to help security analysts to handle the optimal ones. In particular, we apply a Risk Flow Attack Graph (RFAG) to represent network situation and attack scenarios, and analyze them to measure network risk. We also employ a multi-objective genetic algorithm to infer the priority of hardening strategies automatically. Finally, we present some numerical results to show the performance of prioritizing strategies by network risk and hardening cost and illustrate the application of optimal hardening strategy set in typical cases. Our novel approach provides a promising new direction for network and vulnerability analysis to take proper precautions to reduce network risk.

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System (신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.