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1  |   INTRODUCTION

In recent years, cloud radio access network (C‐RAN) architec-
tures have been developed to satisfy ever increasing demands 
for wireless data. However, the performance of C‐RANs is 
typically limited by the throughput‐constrained fronthauls 
used to connect the distributed remote radio heads (RRHs) to 
the pool of centralized baseband units (BBUs) [1]. Fog com-
puting‐based fog radio access network (F‐RAN) architectures 
have been proposed to overcome this limitation [2].

In F‐RANs, services can be provided by a centralized unit 
such as the BBU pool in a C‐RAN or hosted at smart terminal 
devices that are closer to the user equipment (UE) [3]. Fog 
computing relies on a set of low‐power fog access points (F‐
APs) that are located close to the UEs to offload the services 
originally located at cloud data centers [4].

Another important network performance metric is the la-
tency. In wireless networks, the end‐to‐end latency is largely 

made up of the delay through the air interface, core network, 
and public data network (PDN). Among these, the most sig-
nificant is caused by the physical distance between the core 
network and PDN. When compared to cloud computing net-
works, F‐RANs shorten the transmission distance and reduce 
the network latency by colocating core network functions 
and localized mobile data content [5,6]. The scalability and 
flexibility of F‐RANs can be increased by coordinating the 
technologies used in the air interface, network architecture, 
and core network [7]. With these advantages, F‐RAN archi-
tectures have been selected for use in the forthcoming 5G net-
work system [8‒12].

An emerging problem in F‐RANs lies in determining how 
best to distribute content across the network. To answer this 
question, many scholars have researched the distribution and 
caching of content across networks. In [13], a content caching 
and distribution framework for smart grid enabled orthogonal 
frequency division multiplexing (OFDM) networks is presented 
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that facilitates the wireless transmission of multimedia con-
tent to mobile users. In [14], a dynamic content distribution 
(DCD) method is proposed that considers the dynamic supply 
and demand for content in locations frequented by tourists. The 
authors in [15] propose a content centric based network archi-
tecture that includes a novel caching scheme for storing repli-
cas of mobile content. In [16], a distributed cluster formation 
algorithm is described that reduces inter‐F‐AP interference by 
assisting F‐APs in scheduling appropriate UE so as to optimize 
the system throughput. In [17], a set of dynamic content caching 
update rules are detailed that stipulate how much and which part 
of each piece of content should be cached. The authors in [18] 
propose a dynamic control algorithm to optimally locate content 
so as to minimize the overall operational cost overtime under 
service response time constraints. The novel internet access net-
work model based on fog computing that was proposed in [19] 
dynamically moves cloud or web content to nodes located at the 
edge of the access network, and then performs proactive caching. 
The authors in [20] proposed three schemes to solve the energy‐
efficient dynamic content distribution problem while consider-
ing user requests, network resource capacity, and overall energy 
use. In [21], the authors derived the coverage rates and traversal 
rates of F‐AP and device‐to‐device (D2D) users by considering 
different node locations, cache sizes, and user access patterns. 
In [22], a content distribution protocol is proposed that unifies 
piece and peer selection via swarming effects and reduces the 
average download time by up to 20%. In [23], the authors pro-
pose a new Bayesian coalition game (BCG) as‐a‐service for con-
tent distribution among objects with support from the cloud. In 
[24], the authors propose an F‐RAN architecture that includes 
three candidate transmission modes: D2D, local distributed co-
ordination, and global C‐RAN. The authors in [25] present both 
centralized and distributed transmission aware cache placement 
strategies to minimize the average download delay experienced 
by users while considering storage throughput constraints. In 
[26], the authors introduce a new model to compute the total 
energy consumed by content distribution networks (CDNs), and 
the results show that increasing the number of surrogate servers 
decreases the transmission delay. In [27], the authors propose 
a cooperative cache placement framework for multipoint joint 
and single‐cell transmissions, and present numerical results that 
confirm that the scheme achieves faster convergence and greatly 
reduces the content transmission time for mobile users (MUs). In 
[28], the authors investigate the joint optimization of content ob-
ject caching and scheduling for in‐radio access network (RAN) 
caches and prove the feasibility of in‐RAN cooperative caching. 
In addition, they consider different time scales when construct-
ing the joint content object caching and scheduling problem. In 
[29], the authors present an architecture for edge caching, dis-
cuss the challenges in implementing existing caching policies 
in the proposed framework, and provide experimental results 
demonstrating that with the proposed framework, the require-
ments of edge caching services can be guaranteed. However, 

while extensive research has been conducted on the above listed 
topics, little research has focused on developing practical content 
distribution schemes for optimally matching users and F‐APs.

Many intelligent optimization algorithms have been de-
veloped, including the particle swarm, ant colony, and sim-
ulated annealing techniques. However, these suffer from a 
number of limitations.

•	 The particle swarm optimization method has difficulty 
searching for local optima, which may result in premature 
convergence, and the search process may become trapped 
in a local minima when there is insufficient population di-
versity in the search space.

•	 If the parameters of the ant colony algorithm, such as the 
pheromone volatilization coefficient, are set improperly, 
the quality of the obtained solution will suffer. In addi-
tion, this algorithm is complex and requires a significant 
amount of time to compute a solution.

•	 The limitation of the simulated annealing algorithm is that 
it remains unaware of the conditions of the entire search 
space, and therefore has difficulty identifying the most 
promising search area. Thus, the efficiency and conver-
gence speed of this algorithm are low.

An alternative approach to optimization is based on the use 
of genetic algorithms, which were first proposed by Holland and 
his students at Michigan University in the late 1960s and early 
1970s [30]. Genetic algorithms have the following advantages:

•	 The probabilistic mechanisms of crossover and mutation are 
used in every iteration process, which greatly enhances the 
search ability via a more random and extensive search space.

•	 The genetic algorithm has good scalability and can be eas-
ily combined with other algorithms.

For these reasons, the method proposed in this paper for op-
timizing content delivery over F‐RANs is based on a genetic 
algorithm.

The main contributions of this work are as follows:

•	 A genetic algorithm‐based content distribution strategy is 
proposed for use in F‐RAN architectures.

•	 Simulation results are provided that demonstrate the per-
formance, system throughput, and convergence speed of 
the proposed method.

The remainder of this paper is organized as follows. The 
F‐RAN system model is described in Section 2 along with 
the method of allocating content to each F‐AP and demand 
content to each UE. Section 3 describes the problematic con-
tent distribution scenario in detail, and Section 4 describes 
the proposed genetic algorithm‐based content distribution 
scheme. Simulation results that demonstrate the feasibility 
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and superiority of proposed content distribution scheme are 
provided in Section 5 and the paper is concluded in Section 6.

2  |   SYSTEM MODEL

2.1  |  Network model
Let us consider a single macrocellular network, as shown 
in Figure 1. The numbers of F‐APs and UEs are N and M, 
respectively, where N > M. Then, we let S = (N, M). The F‐
APs are numbered 1, 2, …, N and the UEs are numbered 1, 
2, …, M. The set of F‐APs in the simulated scenario were 
uniformly distributed in a cell with radius R and were con-
figured to cache the content requested by the UEs in ad-
vance from the cloud data centers through the backhaul and 
fronthaul links. A set of UEs was also uniformly distributed 
in this area and configured to request content over the F‐APs. 
Each F‐AP was assumed to have a fixed transmit power Pt. 
The wireless links in this scenario were configured to use the 
orthogonal frequency division multiple access scheme.

2.2  |  Caching model
The set of content provided by the network to the UEs is 
C = {C1, C2, C3, …, CK}. The content that was cached by 
the F‐APs was selected based on the respective popularities 
of each piece of content. The content caching probability fol-
lows a Zipf distribution, which can be computed as follows:

where 
∑K

j=1
PF

Ci

�
�1, K

�
=1, i represents the index of the con-

tent, n is an integer variable used in the summation, and 
σ1(σ1 > 0) is the parameter describing the Zipf distribution, 
which determines the relative popularity of the cached content. 
Larger values of σ1 indicate that the probability caching the 
most popular content is larger. The total number of pieces of 
content is K. From (1), it can be seen that the smaller i is, the 
larger PF

Ci
 is, which indicates that the content with smaller index 

values are more likely to be cached by the F‐APs. In other 
words, the probability of caching is greater for smaller index 
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)
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Similarly, the content demanded by the UEs was deter-
mined using the Zipf distribution. The content demand prob-
ability can be calculated as follows:

where the parameters in this equation are as defined above 
and σ2 is a parameter describing the Zipf distribution. The 
smaller σ2 is the more popular is the content requested by 
the UEs.
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F I G U R E  1   F‐RAN system model
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3  |   PROBLEM FORMULATION

The content distribution problem of interest in this scenario 
is as follows. When UE j is paired with F‐AP i, then UE j 
obtains any required content from F‐AP i. The signal‐to‐in-
terference plus noise ratio (SINR) value of UE j is given by:

where Pt is the transmit power of the F‐AP, ri,j is the distance 
from F‐AP i to UE j, α is the path loss factor, Iinter‐cell is the 
inter‐cell interference, and Iintra‐cell is the intra‐cell interfer-
ence. In this study, it was assumed that the noise was addi-
tive white Gaussian noise (AWGN) with a noise power n0B, 
where n0 represents the power spectral density of the noise 
and B represents the subchannel bandwidth. As in Rayleigh 
fading channels, |hi,j|2 follows an exponential distribution 
with unit mean.

In previous works, many researchers have proposed meth-
ods to mitigate inter‐cell interference, such as power control 
[31], scheduling [32], and coordinated multipoint [33]. As 
mentioned before, we only consider a single macrocellular 
network where the inter‐cell interference is ignored in this 
paper. In the system model evaluated in this study, there was 
assumed to be N content providers (F‐APs) and M users (UEs) 
in a cell. When a user requested certain content, an optimal 
content provider was selected to deliver it. As the F‐AP only 
stores a limited amount of content, the content requested by 
the user may not be available from the nearest F‐AP. Note that 
if the same frequency is adopted for every pair in the network, 
then simultaneous communication becomes difficult due to 
the introduced co‐channel interference. While a resource reuse 

scheme, such as non‐orthogonal multiple access, can be used 
to improve the spectral efficiency, it will result in high levels 
of interference and a higher implementation complexity [34]. 
Thus, the intra‐cell interference in this model can be ignored. 
Then, the SINR value of UE j can be rewritten as:

The throughput for UE j can be computed as follows:

and the system throughput can be written as:

Then, the optimization goal can be obtained as:

where Γ is the SINR threshold and M is the number of UEs.
In a certain cell, it is assumed that there are three UEs 

and five F‐APs that are uniformly distributed as shown in 
Figure 2. The user is interested in content C1, C2, C3, …, C10. 
For example, it is assumed that users 1, 2, and 3 wish to 
receive content C1, C2, and C3, respectively. The content 
cached at each F‐AP are shown in Figure 2. It can be seen 
from Equation  that if the content requested by a particu-
lar user is cached at the nearest neighbor node of the user, 
then this user will receive the optimized throughput value. 
Assume that the distance between UE i and F‐AP j is dij. 
Then, with reference to Figure 2, the distance relationship is 
as follows:

As shown in Figure 2, the content requested by user 3 is 
cached at all F‐APs, and F‐AP 5 is closest to user 3. Therefore, 
if user 3 is paired with F‐AP 5, then the optimized throughput 
can be achieved. However, the content requested by user 1, 
namely C1, was not cached at F‐AP 1, which was the nearest. 
In addition, the content requested by user 2, namely C2, was 
not cached at F‐AP 2, which is closest to the user 2. Thus, 
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F I G U R E  2   Scene to be solved by genetic algorithm
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users 1 and 2 must locate other F‐APs from which to source 
their requested content. In such a scenario, it is important to 
determine how best to distribute the content from the F‐APs 
to all UEs. Ideally, a rational distribution strategy can im-
prove resource utilization, reduce the transmission delay, and 
achieve optimal system throughput.

This optimization problem is solved in the following sec-
tion using the genetic algorithm.

4  |   GENETIC ALGORITHM‐BASED 
OPTIMAL CONTENT DISTRIBUTION 
SCHEME

The proposed optimal content distribution scheme is de-
scribed in this section. In this approach, the system through-
put is optimized by pairing the F‐APs and UEs based on the 
genetic algorithm.

The advantages of genetic algorithms were introduced in 
Section 1. The main principles of genetic algorithms are as follows.

•	 Produce an initial population.
•	 Construct a fitness function according to the objective 

function of the problem.
•	 Continue choosing and multiplying according to the fitness 

value.
•	 After several generations, the best fitness value is the opti-

mal solution.

A flowchart of the proposed algorithm is shown in Figure 3 
and contains the following six steps.

4.1  |  Coding
Each chromosome is encoded as an M‐dimensional vector 
Ux =

(
u1, … , um, … , uM

)
, um ∈ {1, 2, … , N} and the el-

ements in the chromosome can be repeated. Here, x is the 
index of the individual in a population. For S = (7, 4), there 
is a chromosome encoded as Ux = (3, 1, 6, 2), which means 
that UE 1 acquires its content from F‐AP 3, and UEs 2, 3, and 
4 acquire their content from F‐APs 1, 6, and 2, respectively, 
as illustrated in Figure 4.

4.2  |  Population Initialization
Define the number of initialized populations as NP. The ele-
ments in chromosome Ux are discrete random variables from 
1 to N. Note that it is necessary to verify the initial population.

•	 If none of the content requested by the UEs is present in 
the F‐AP corresponding to one or more genotypes of an 
individual, the individual should be reinitialized until the 
condition is satisfied.

•	 In terms of UEs, if multiple UEs are paired with the same 
F‐AP, the content requested by these UEs should be the 
same. Otherwise, the individual should be reinitialized.

4.3  |  Select the fitness function
Each individual in the genetic algorithm is assigned a 
fitness value, which is a deterministic index describing 
the individual survival opportunity in the group. As men-
tioned in Section 3, the system throughput was selected 
as the fitness function in the proposed approach. This fit-
ness function is as per (6) and the optimization goal is as 
per (7).

4.4  |  Breeding process
In the genetic algorithm, the population evolves toward the 
optimal solution via a breeding process that comprises four 
steps: selection, crossover, mutation, and amendment.

F I G U R E  3   Flowchart of the proposed algorithm
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4.4.1  |  Selection
In the genetic algorithm, the most commonly used selection 
strategy is the proportional selection strategy, that is, the 
probability that each individual is selected for genetic opera-
tion is the ratio of the fitness of the individual to the sum of 
all individual fitness values in the population. Here, for chro-
mosome Ux, the probability of being selected for breeding 
offspring is:

According to the classic roulette wheel selection program 
[35]:

The total number of turns of the roulette wheel is NP. For 
the kth turn, �k ∈ U (0, 1) is generated randomly. The indi-
vidual Ux will be selected to reproduce the offspring when 
the relationship PPx−1 ≤ ξk ≤ PPx has been established.

4.4.2  |  Crossover
The purpose of crossover is to produce better offspring. In 
this process, two chromosomes are simultaneously manipu-
lated so that the properties of each can be combined to pro-
duce new offspring. The crossover method in the proposed 
algorithm is a single cutoff point crossover. The chromosome 
crossover point is selected randomly. The genes of the parent 
chromosomes located at the right side of the crossover point 
are exchanged to produce offspring.

For example, for S =(9, 5), the crossover point is assumed 
to be three. If the two chromosomes U1 = (3, 5, 2, 1, 6) and 
U2 = (4, 1, 5, 2, 3) are selected as parents to crossover, the 
process proceeds as shown in Figure 5. After crossover, 
the resulting chromosomes are U1 = (3, 5, 2, 2, 3) and 
U2 = (4, 1, 5, 1, 6).

However, not all selected parents should cross. The 
value of the crossover probability is pc. Many scholars 
recommend selecting a crossover probability between 0.6 
and 0.9 [36]. This is because a higher crossover probabil-
ity results in a larger solution space, thereby reducing the 
likelihood of finding a nonoptimal solution. However, if 
the cross probability is too high, it will increase the com-
putational burden required to search the oversized solution 
space. It is therefore important to ensure that pc is selected 
appropriately.

To improve the performance of the proposed algorithm, 
an adaptive crossover probability mechanism is introduced 
[36,37]. This addition efficiently enhances the searching abil-
ity and increases the convergence speed. The adaptive cross-
over probability for individual i can be written as:

where pc0 is the initial crossover probability with a reference 
range from 0.6 to 0.9, α is the coefficient factor, fmin and fav-

erage are the minimum and average fitness values of the cur-
rent population, respectively, and fi is the fitness value of the 
individual i. As detailed in previous work [36], the values of 
pc0 and α were set to 0.6 and 0.5, respectively. As per (14), 
the greater the fitness value of the individual, the greater the 

(11)
Px =

C
�
Ux

�

NP∑
m=1

C
�
Um

�
.

(12)PP0 =0,

(13)PPx =

x∑

j=1

Pj.

(14)pc (i)=

{
pc0

(
1+𝛼

fi−fmin

faverage−fmin

)
, fi ≤ faverage

1, fi > faverage

,

F I G U R E  4   Example of the proposed content distribution scheme

F I G U R E  5   Example of the crossover process: (A) chromosomes 
selected to crossover and (B) offspring after crossover
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probability of being selected for crossover. If the fitness value 
of an individual is higher than the average fitness value in this 
generation, then the crossover probability of the individual 
is one.

4.4.3  |  Mutation
The purpose of mutation in this context is to maintain 
the diversity of the population. Here, mutation refers 
to the changing of random gene bits Ui,j in the popula-
tion according to the mutation probability pm, where 
Ui,j ∈{1, 2, … , N}, i = 1, 2, …, NP, j = 1, 2, …, M. In ge-
netic algorithms, mutations can produce genes that did not 
appear in the initial population, which adds new content to 
the population.

The mutation probability governs the probability of intro-
ducing genetic variation into an individual. In previous work 
[35], typical values of the mutation probability are in the 
range of 0.005–0.05. However, as these mutation probability 
values are extremely small, an adaptive method of setting the 
mutation probability was not included in the proposed algo-
rithm. Instead, the mutation probability was set to a constant 
value of pm = 0.05.

4.4.4  |  Amendment
To guarantee the quality of service (QoS) to the UE, the 
SINR value must be greater than the SNIR threshold. In ad-
dition, proofreading is required for each new generation after 
breeding. Here, the revision method is similar to that used for 
population initialization. For an individual:

•	 If the UE has not requested any content from the F‐AP that 
corresponds to one or more genotypes in the new individ-
ual, then the individual is replaced with the corresponding 
one in the population of the last generation.

•	 If the same element exists, that is, different individuals are 
paired with the same F‐AP, then these individuals must be 
interested in the same content. Otherwise, the individual 
should be replaced by the corresponding one in the popu-
lation of the last generation.

In addition, if the content requested by the UE does not exist 
in any F‐AP, the UE will request that the required content be 
delivered from the cloud data centers.

4.5  |  Optimal preservation strategy
For each generation of the population, the best individual 
in the population is retained as part of the optimal set, 
which is used in the selection of the next generation. In 
this way, the optimal individuals in each generation are 
not lost.

4.6  |  Stopping criteria
We denote the number of iterations as NG. In general, 
the population will converge after NG iterations, result-
ing in an optimal chromosome, which can be used to 
calculate the optimal result. In this paper, the population 
stops breeding when the required number of iterations is 
reached as this represents the optimized throughput of the 
system.

5  |   SIMULATION RESULTS AND 
ANALYSIS

A MATLAB simulation was conducted to evaluate the 
performance of the proposed content distribution scheme. 
In the simulation, it was assumed that there were nine 
F‐APs and four UEs uniformly distributed in a cell with 
radius R. The locations of the UEs and F‐APs in the cell 

F I G U R E  6   Distribution of the UEs and F‐APs

T A B L E  1   Simulation parameters

Parameters Value

Population number (NP) 11

Number of iterations (NG) 50

Number of pieces of popular content (K) 100

Cell radius (R) 200 m

SINR threshold (β) 4.6 dB

Noise power (N0) −174 dBm

Bandwidth of the subchannel (B) 0.2 MHz

Transmit power of the F‐APs (Pt) 200 mW

Path loss exponent (α) 4

Zipf index 1 (σ1) 1.4

Zipf index 2 (σ2) 1.5
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are illustrated in Figure 6. The simulation parameters are 
shown in Table 1.

A comparison of the system throughput obtained via 
the genetic, exhaustive, and random algorithms is shown 
in Figure 7. In the figure, it can be seen that the exhaustive 
algorithm achieved the best results as it evaluates an ex-
haustive list of all possible situations. However, in the simu-
lations in this study, the exhaustive algorithm was observed 
to have a high complexity as it required NM computations 
(94 = 6,561), which takes a long time to complete. In con-
trast, the throughput based on the genetic algorithm quickly 
converged to a value close to the optimal value obtained 
via the exhaustive algorithm and was far superior to that 
obtained by the random algorithm. The population reached 
the optimal value after only approximately 13 iterations.

The cumulative distribution function (CDF) curves 
of the system throughput for the different algorithms are 

shown in Figure 8, where it can be seen that the proposed 
genetic algorithm obtain a 4 Mbps system throughput 
gain compared with the random algorithm. At the same 
time, while the system throughput of the proposed genetic 
algorithm was very close to that of the exhaustive algo-
rithm, the complexity of the proposed genetic algorithm 
was significantly lower. These results demonstrate the ex-
cellent performance of the proposed content distribution 
strategy.

6  |   CONCLUSION

In this paper, an optimal content distribution scheme based 
on a genetic algorithm was proposed. In the target scenario, N 
F‐APs and M UEs were uniformly distributed around the cell. 
When the F‐APs and UEs were paired using the genetic algo-
rithm, the optimal system throughput was obtained. The final 
simulation results show that the performance of the proposed 
method was far superior to that of the random algorithm and 
close to that of the exhaustive algorithm. It is anticipated that 
these results will prove useful in the design and optimization 
of F‐RAN architectures.
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