DOI QR코드

DOI QR Code

Biogeography and Distribution Pattern of a Korean Wood-eating Cockroach Species, Cryptocercus kyebangensis, Based on Genetic Network Analysis and DNA Sequence Information

  • Published : 2007.11.30

Abstract

We examined the evolutionary and ecological processes shaping current geographical distributions of a Korean wood-eating cockroach species, Cryptocercus kyebangensis. Our research aims were to understand evolutionary pattern of DNA sequences, to construct genetic network of Cryptocercus kyebangensis local populations and to understand evolutionary and ecological processes shaping their current geographical distribution patterns via DNA sequence information and genetic networks, using sequence data of two genes (ITS-2 and AT region) from local populations of C. kyebangensis. The results suggest that the ITS-2 and AT region are appropriate molecular markers for elucidating C. kyebangensis geographic patterns at the population level. The MSN-A based on the ITS-2 showed two possible routes, the Hwaak-san and Myeongji-san route and the Seorak-san and Gyebang-san route, for migration of ancestral C. kyebangensis into South Korea. The MSNs (MSN-A and -B) elucidate migration routes well within South Korea, especially the route of Group I and Group II.

Keywords

References

  1. Bey-Bienko GI. 1950. Fauna of the USSR. Insects. Blattodea. Institute of Zoology, Academy of Sciences, Moscow, 342 P. (in Russian)
  2. Cleveland LR, Hall SR, Sanders EP, Collier J. 1934. The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17: 85-342
  3. Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47-50
  4. Grandcolas P, Legendre F, Park YC, Belles X, Murienne J, Pellens R. 2005. The genus Cryptocercus in East Asia: distribution and new species (Insecta, Dictyoptedra, Blattaria, Polyphagidae). Zoosystema 27: 725-732
  5. Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160-174 https://doi.org/10.1007/BF02101694
  6. Kimball RT, Braun EL, Zwartjes PW, Crowe TM, Ligon JD. 1999. A molecular phylogeny of the pheasants and partridges suggests these lineages are polyphyletic. Mol Phylogenet Evol 11: 38-54 https://doi.org/10.1006/mpev.1998.0562
  7. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120 https://doi.org/10.1007/BF01731581
  8. Lockhart PJ, Penny D, Meyer A. 1995. Testing the phylogeny of swordtail fishes using split decomposition and spectral analysis. J Mol Evol 41: 666-674
  9. Maekawa K, Park YC, Lo N. 2005. Phylogeny of endosymbiont bacteria harbored by the woodroach Cryptocercus spp. (Cryptocercidae: Blattaria): Molecular clock evidence for a late Cretaceousearly Tertiary split of Asian and American lineages. Mol Phyl Evol 36: 728-733 https://doi.org/10.1016/j.ympev.2005.03.033
  10. Nalepa CA. 1984. Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav Ecol Sociobiol 14: 273-279 https://doi.org/10.1007/BF00299498
  11. Park YC, Grandcolas P, Choe JC. 2002. Colony composition, social behavior and some ecological characteristics of the Korean woodfeeding cockroach (Cryptocercus kyebangensis). Zoo Sci 19: 1133-1139 https://doi.org/10.2108/zsj.19.1133
  12. Park YC, Choe JC. 2003. Life history and population dynamics of Korean woodroach (Cryptocercus kyebangensis) populations. Korean J Biol Sci 7: 111-117 https://doi.org/10.1080/12265071.2003.9647691
  13. Park YC, Maekawa K, Matsumoto T, Santoni R, Choe JC. 2004. Molecular phylogeny and biogeography of the Korean woodroaches. Cryptocercus spp. Mol Phylogenet Evol 30: 450-464 https://doi.org/10.1016/S1055-7903(03)00220-3
  14. Rambaut A. 1996. Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk/
  15. Rohlf FJ. 1973. Algorithm 76. Hierarchical clustering using the minimum spanning tree. The Computer Journal 16: 93-95
  16. Randi, Lucchini, 1998. Organization and evolution of the mitochondrial DNA control-region in the avian genus Alectoris. J Mol Evol 47: 449-462 https://doi.org/10.1007/PL00006402
  17. Seelinger G, Seelinger U. 1983. On the social organization, alarm and fighting in the primitive cockroach Cryptocercus punctulatus Scudder. Z Tierpsychol 61: 315-333 https://doi.org/10.1111/j.1439-0310.1983.tb01347.x
  18. Sbisa E, Tanzariello F, Reyes A, Pesole G, Saccone C. 1997. Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene 205: 125-140 https://doi.org/10.1016/S0378-1119(97)00404-6
  19. Swofford DL. 2002. PAUP$^{\ast}$, Phylogenetic Analysis Using Parsimony ($^{\ast}$and other Methods), Version 4.10b. Sinauer Associates, Sunderland, MA
  20. Tajima F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437-460
  21. Taylor MFJ, McKechnie SW, Pierce N, Kreitman M. 1993. The Lepidopteran mitochondrial control region: Structure and evolution. Mol Bid Ed 10: 1259- 1212
  22. Tompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4879-4882
  23. Yang Z. 1998. On the best evolutionary rate for phylogenetic analysis. Syst Biol 47: 125-133 https://doi.org/10.1080/106351598261067