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Abstract 
 

Network environment has been under constant threat from both malicious attackers and 
inherent vulnerabilities of network infrastructure. Existence of such threats calls for 
exhaustive vulnerability analyzing to guarantee a secure system. However, due to the diversity 
of security hazards, analysts have to select from massive alternative hardening strategies, 
which is laborious and time-consuming. In this paper, we develop an approach to seek for 
possible hardening strategies and prioritize them to help security analysts to handle the 
optimal ones. In particular, we apply a Risk Flow Attack Graph (RFAG) to represent network 
situation and attack scenarios, and analyze them to measure network risk. We also employ a 
multi-objective genetic algorithm to infer the priority of hardening strategies automatically. 
Finally, we present some numerical results to show the performance of prioritizing strategies 
by network risk and hardening cost and illustrate the application of optimal hardening strategy 
set in typical cases. Our novel approach provides a promising new direction for network and 
vulnerability analysis to take proper precautions to reduce network risk. 
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1. Introduction 

Information security environment has been experiencing tremendous shift over the last 
decade. The fact that capability of brute force and scale of botnet dominate network attack 
effect has been brushed into background. Adversaries tend to adopt complicated invasive 
actions to achieve goal with an information-driven precision instead of blindness of target 
selection [1]. All these changes have led to emerging threats and sophisticated attackers such 
as Advanced Persistent Threat (APT) and Determined Human Adversaries (DHA). When 
dealing with these sophisticated environment and determined adversaries, precise 
environmental model, interactive adversary pattern and advisable risk analysis are required for 
the sake of potential prevention. 

Since manual security analysis is error-prone and tedious, and gradually becomes 
infeasible for large and complicated networks. Paradigms like attack graphs [2,3] and attack 
trees [4,5] have been commonly adopted by researchers to build security model and determine 
attack scenarios that could lead to damage. With the aid of such methods, security analysts are 
able to obtain concise representation of all the paths an attacker may follow to compromise a 
security goal through leveraging dependencies among known vulnerabilities [6]. However, 
while attack graphs can reveal threats, they do not directly provide solutions of security 
hardening. In practice, it is almost infeasible to remove all identified threats since the system 
administrator always has to work within a given set of fixed budget constraints. Moreover, 
under no circumstances should security mitigation measures affect the normal operation of 
network infrastructure. Therefore, the crucial question in defending against those nontrivial 
invasions is that: which of the vulnerabilities should be removed to mitigate security risk to 
acceptable levels without causing a breakdown of normal services, where such removal incurs 
the least cost? [7] 

To make this specific problem from intractable to approachable, efforts have been spent in 
this context. Researches have been performed to seek for a trade-off between the cost of 
securing chosen vulnerability subsets and the residual damage caused to network if certain 
weak points are left unpatched [7,8].  

The above research works motivate us to study the optimal security hardening problem. In 
particular, we first introduce a series of risk metrics and augment the attack graph to risk flow 
attack graph. This extension not only preserves the advantages of traditional attack graph to 
represent network state and vulnerabilities, but also depicts the adversary’s status transition 
sequence. By encoding the attack pattern and defending strategy into binary sequences, we 
employ a multi-objective genetic algorithm in deriving hardening solutions.  Performance of a 
solution is measured by a pair of risk function and cost function, the value of which is related 
to the risk flow attack graph metrics. This implementation enables us to revisit network risk by 
following the risk path of originating, transferring, redistributing and converging. We observe 
that this approach is able to achieve an optimal solution set of security hardening strategies 
which takes full account of residual risk and enhancement cost. 

The rest of this article is organized as follows. Section 2 gives an overview of some related 
work. Section 3 describes a risk flow attack graph model to illustrate our method. Section 4 
presents our approach of using multi-objective genetic algorithm for optimal security 
hardening in detail. The experimental results are presented in Section 5. Finally, Section 6 
summarizes this paper and discusses future work. 
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2. Related Work 
The network security hardening problem has been extensively studied in all manner of ways. 
Among the massive explorations, different variants of attack graphs have been applied by 
researchers. In [7,9], the exploit dependency graph was utilized to make assignments of initial 
network conditions, represent given set of critical resources as a logic proposition of these 
initial conditions, and compute actual sets of hardening measures to guarantee the safety of 
given critical resources. Their approaches worked from a new perspective of initial conditions 
rather than independent exploits. Ref [10,11] focused on achieving cost-effective security 
controls by exploring the logical attack graph to represent network observations. They 
identified vulnerabilities existed in network and explored their causal relationships. Similarly, 
[12-14] concentrated on accurately measuring risk for enterprise networks. They considered 
from the perspective of security defenders and made efforts to select the most effective 
countermeasures against multi-step network penetration such as zero-day exploits, client-side 
attacks, etc. 

Ref [15] on the other hand, took not only the defender’s cost, but also the attacker’s 
strategy into account. Their approach modeled the attacker-defender interaction as an 
arms-race, and explored how security controls can be placed in a network to induce a 
maximum return on investment. They also developed a multi-objective approach to formulate 
the vulnerability-patching problem, taking advantage of an attack tree model and using an 
evolutionary algorithm to search for the solution. 

Because the security hardening issue is influenced by many real-world elements, such as 
residual damage, network reliability, enhancement payoff, etc. It is feasible to model it into a 
multi-objective problem. Ref [16] provided such a formulation and emphasized that the 
settlement of specific vulnerabilities may introduce additional potential damage to network. 
Moreover, a genetic algorithm was adopted to choose the minimal-cost security profile 
providing the maximal vulnerability coverage. Ref [17] demonstrated a model of quantitative 
risk analysis, and deplyed a genetic algorithm to search for the best countermeasure 
combination, while multiple risk factors are considered. Apart from genetic algorithm, efforts 
have been spent to seek for more possibilities of solving the problem. Frigault et. al. [18] 
introduced security metrics into attack graph for measuring network security risks using 
dynamic Bayesian network, and Xie et.al. [19] extended their work by capturing uncertainties 
in attacker action, intrusion alerts, etc. Zhang et. al. [20] adopted Hidden Markov Model 
(HMM) instead. They constructed a quantitative model to specify cost factors and design 
heuristic algorithms for automated inference.  

In summary, researchers have explored various possibilities on modeling vulnerabilities 
and analysing security. Yet there are still problems that remain unsettled. For example, some 
approaches define risk functions of static network metrics, which are always based on 
empirical statistics. Furthermore, most of previous works tend to work out an optimal solution 
of security hardening, which will limit the application of such methods. Because when facing 
diversified security goals, these methods have to be modified to meet the security hardening 
targets.   

Our work has fundamental differences with previous works because it adopts risk flow 
attack graph to represent and simplify network observations rather than using complicated 
attack trees or attack graphs. It also develops a different way of calculating network risk by 
following the risk state transitions of two attacker prototypes in the attack graph. This 
calculation can dynamically relate network risk to the implementation of security precautions. 
Then, by relating the objective functions of a multi-objective genetic algorithm to the risk 
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function, our approach can arrive at a Pareto optimal set of hardening strategies. This optimal 
set can help security analysts to filtrate most inferior solutions and reduce the amount of 
alternatives by orders of magnitudes. Moreover, it’s convenient for the optimal set to 
cooperate with different security goals and hardening constraints, because defenders can 
choose specific solutions flexibly from the optimal set to address practical security problems. 
Compare with previous works which also adopt genetic algorithms to work out the problem, 
such as [8][17] and [20], our method have three major differences. First, our multi-objective 
model is constructed on the basis of simplified risk flow attack graph rather than complex 
attack trees or attack graphs. Second, we introduce a fitness based crowd distance sort scheme 
to facilitate global convergence of genetic algorithm. Third, we employ an elite strategy in our 
method, which can help maintain diversity of individuals and guarantee the efficiency of 
algorithm. 

3. Model and Background 
As has been noted, network environment is becoming more and more sophisticated and 
attackers tend to adopt multiple actions to achieve goal. Among these prominent changes, 
which remains unaltered is the fact that vulnerabilities have always been one of the most 
favorable means for attackers to utilize when penetrating a network. In this section, we 
describe how to model and quantify network vulnerabilities as well as attack patterns using 
risk flow attack graph. For simplicity, we focus only on the application rather than the 
generation process of the graph. We also introduce some basic definitions and the approach of 
measuring security risk in risk flow attack graph. These elaborations are requisite for Section 4 
where we show how to find efficient hardening method. 

We consider the hypothetical network shown in Fig. 1. The setup consists of three servers 
and an internal host. The Database Server (DS) and the File Server (FS) are located inside the 
internal firewall, as well as the internal user on Host 1. Each dashed box on the server icon 
depicts services an external user can utilize to communicate with these servers. Other 
unauthorized accesses will be blocked by the external firewall policy. In addition, we assume 
that the adversary on Host0 intends to compromise the DS. 

 

Database Server

File Server

Web Server

Host 0
Adversary

Host 1
Internal User

Internet

Router

External Firewall

Internal Firewall

http
ssh

ftp
ssh

ftp
ssh

 
Fig. 1. Hypothetical network model 
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Formally, a risk flow attack graph can be described as a tuple, 

{ , , , , }RFAG V E fτ µ= , where 

1) V : s g mV V V V= ∪ ∪ constitute the set of nodes. sV  and gV  indicate initial capabilities and 
the ultimate goal of an attacker, respectively. mV  is the intermediate node set representing the 
status of individual network assets. Each element in the node set has a value of true or false, 
indicating whether this asset is compromised by an attacker. 
2) E : (( ) ( ))s m m gE V V V V⊂ ∪ × ∪ is the set of edges in the graph. Each edge can be mapped to 
a vulnerability which can be exploited. The binary values of {0,1} can be assigned to indicate 
whether the corresponding vulnerability is utilized by an attacker to penetrate the network. 
Specifically, ‘1’ stands for a successful penetration and ‘0’ otherwise. 
3) τ : ( )V Vτ ⊆ ×  . An ordered pair ( , )pre postV V τ∈  if there exists an edge ε  that 

( ( )) ( ( ))pre postV pre V postε ε∈ ∧ ∈ .  
4) µ : ( )E Vulsµ ⊂ →  is a mapping from an edge to its corresponding vulnerability. The 
metrics of the vulnerability will help determine the risk on edge and of the network. 
5) f : f is the risk function defined on exploit edges, the calculation of f depends on 
specific application scenarios. Our definition of risk function will be given later in this section. 

For better illustration, we exemplify the attack graph of hypothetical network model in Fig. 
2, which is similar to that in [20]. Some modeling specifications have been made, such as 
defining two typical attack prototypes, emphasizing exploit edges and constructing risk 
function. 

convergence prototype
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Fig. 2. Risk flow attack graph for hypothetical network 
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The corresponding nodes and edges are defined in Table 1 to amplify the sample scenario., 
 

Table 1. Definition of nodes and edges 
Node Notation Node Notation 

v1 user(0) e12 atk(h0,http,WS) 
v2 root(WS) e13 atk(h0,ssh,WS) 
v3 guest(WS) e34 atk(WS,ssh,h1) 
v4 user(1) e27 atk(WS,BoF,DS) 
v5 user(FS) e45 atk(h1,ftp,DS) 
v6 root(1) e46 com(h1,BoF) 
v7 user(DS) e57 atk(FS,ssh,DS) 
v8 root(DS) e78 com(DS,BoF) 
  e68 com(h1,ftp,DS) 

 
As depicted in Fig. 2, exploits appear as edges, and network conditions as nodes. As an 

example of attack paths, a path 1 13 34 46 68 1 3 4 6 8[ , , , | , , , , ]AP e e e e v v v v v= consists of four exploits and 
five conditions, including the initial condition 1v and the ultimate goal 8v . Following this attack 
path, an attacker (host 0) can first establish a trust relationship and gain root privilege on WS 
by exploiting a ssh vulnerability on it, then gain user privilege on host 1 via a remote ssh attack. 
After that, a local buffer overflow vulnerability makes the attacker able to get a root privilege 
on host 1. Finally, the goal of root privilege on DS is achieved by compromising a remote ftp 
connection vulnerability. In total, there are three feasible attack paths which can be generated 
using existing algorithms [2]: 

 
 1 13 34 46 68 1 3 4 6 8[ , , , | , , , , ]AP e e e e v v v v v=  
 72 12 27 78 1 2 8[ , , | , , , ]AP e e e v v v v=  
 57 5 73 13 34 45 78 1 3 4 8[ , , , , | , , , , , ]AP e e e e e v v v v v v=  

 
Generally, security risk will always conceal in these feasible attack paths. However, when 

an exploit occurs, it will bring the latent risk to the table, causing a series of safety problems. 
By modeling of RFAG, we represent attackers’ behavior by the binary value of exploit edges. 
Under normal circumstances, the states of exploit edges are set to ‘0’ and security risk is 
implicit. When the network is under attack, adversaries will choose certain attack paths on 
their own preferences. These attacks will activate relevant exploit edges and set their states to 
‘1’, which means that the implicit risk will become explicit and do actual harm to network. 
Moreover, this kind of risk will always originate, transfer, redistribute and converge along the 
attack path. 

Although the RFAG can give intuitive analysis of attack paths, an optimal solution to 
harden the network is still not apparent from the attack graph itself. To address this problem, 
we give several requisite definitions in this section to help find an efficient hardening method. 

3.1 Attack Path 
Generally, there is at least one feasible attack path in an attack graph, pointing from the 
adversaries’ initial status to their ultimate attack goals. Formally, an attack path kAP  is an 
ordered set of condition nodes and exploit edges where 12 23 1 2[ , ,..., | , ,..., ]k k k k k k

k mn nAP e e e v v v= . 
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3.2 Attacker Prototype 
As depicted in Fig. 2, there are two prototypes in the risk flow attack graph, the divergence 
prototype and the convergence prototype. 

- Divergence prototype: a node is true if and only if its parent node and the edge between 
them are both true. The logic truth table of a divergence prototype is shown in Table 2. 

 
Table 2. Logic truth table of divergence prototype 

va eab vb 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
As inferred from the logic truth table, the logical relationship between a node bv and its 

parent node av  in a divergence prototype is that b a abv v e= . Accordingly, the potential risk PR 
of bv can be calculated as: 
 

( ) ( ) ( )b a abPR v PR v PR e= +                                                       (1) 
 

In (1), we take the Common Vulnerability Scoring System (CVSS) base score to 
represent ( )abPR e . The detailed calculation is omitted here and can be found in the Common 
Vulnerability Scoring System in [21].  

- Convergence prototype: a node is true once an arbitrary pair of its parent node and their 
connection edge is true. Similarly, the logic truth table of a divergence prototype is shown in 
Table 3. 

 
Table 3. Logic truth table of convergence prototype 

va eac vb ebc vc 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 
0 0 1 1 1 
0 1 1 1 1 
1 0 1 1 1 

 
Similar with the divergence prototype, the logic truth values in Table 3 depicts 

a c a ac b bcv v e v e= + relationship in the convergence prototype. The potential risk PR of cv can be 
calculated by: 
 

* *( ) max{ ( ) ( )}c cPR v PR v PR e= +                                           (2) 
 
where *v is the parent node of cv connected by *ce . 
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3.3 Hardening Strategy 
For a given set of h exploit edges, the hardening strategy 1 2( , ,..., )hHST ST ST ST=  is a Boolean 
vector indicating which strategy iST is implemented on exploit edge ie . Particularly, 1iST =  if 
hardening strategy for ie  is chosen, otherwise 0iST = . 

Specifically, countermeasures that are frequently-adopted by defenders can be divided to 
the following types according to an OSVDB (Open Source Vulnerability Database) [22] 
classification: 
 Patch(): patch the corresponding vulnerability using patches released by vendors; 
 Configure(): alteration of default configurations, such as blacklist, whitelist and access 

control table; 
 Upgrade(): upgrade relative software or operating system to a safer version; 
 Disconnect(): disconnect the vulnerable services from Internet or Local Area Network; 
 Disable(): disable vulnerable services or shutdown corresponding systems. 

The implementation of security countermeasures will incur different security control cost, 
including installation cost, operation cost, system downtime, incompatibility cost, etc. In 
practical applications, these data can be obtained by statistics. For simplification, in this work 
we omit the acquisition of the costs and use a decimal [0,1]iC ∈ to represent the cost of iST . And 
the overall cost C(HST) of harden strategy HST can be formulated as: 
 

1
( ) ( )

h

i i
i

C HST C ST
=

=∑                                                         (3) 

3.4 Risk Function 
The value of risk function f can not only measure the security status of network, but also 
indicate the validity of enhancement measures. Suppose there are l attack paths in a given risk 
flow attack graph G, the attack path set { | , }iAP AP i l i Z += ≤ ∈ , and the hardening 
strategy

1 2
( , ,..., )

he e eHST ST ST ST= , the risk polynomial of an attack path can be formulated as: 
 

*
*,

( ) ( ( ) )
i j

j j i

AP j e
v e AP

R HST PR v ST
∈

= ∗∑                                               (4) 

We take the accumulation risk of network assets to define the risk of an attack path. This 
risk value is an accumulative function of harden strategy HST and independent node risk. In 
this formulation, the risk value PR(vj) of an independent node vj is calculated recursively by 
(1) and (2) following the exploit sequence of the path.  

Based on common threat behavior, it’s a reasonable assumption that higher risk paths are 
likely to have a larger selection probability. Under this assumption, we measure the 
probability of attack path selection as: 

 
0

0
1

( )

( ( ))
i

i

i

AP
lAP

AP
i

R HSTp
R HST

=

=
∑

                                             (5) 

 
Here, HST0 stands for the harden strategy of {000…00}, considering that adversaries 

always hold the hypothesis that the conditions are available to exploit. Apparently, our 
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definition of pi satisfies the basic requirements of non-negativity, normalization and countable 
additivity. The properties of 

iAPp are listed as follows: 
 [0,1)

iAPp ∈ ; 

 
1

1
i

l

AP
i

p
=

=∑ ; 

 
1 21 2( ... ) ...

kk AP AP APAP AP APp p p p∪ ∪ ∪ = + + + ; 

In practice, adversaries tend to choose m of l attack paths at a time to penetrate the network. 
Hence, the risk value of the whole network can be calculated as: 
 

1 1 [1, ]\{ }
*( ) ( ) ( ( )* (1 ))

i i i k

m m

AP AP AP AP
i i k m i

PR HST R HST R HST p p
= = ∈

= ⊕ = −∑ ∑ ∏              (6) 

4. Using GA for Optimal Hardening 
Our approach to seek for efficient hardening strategies is to formulate it into a multi-objective 
genetic algorithm problem that: 

Given a risk flow attack graph G, find an optimal vector HST , which minimize the overall 
security control cost C(HST) and network risk PR(HST). 

The solver starts with an initial population of chromosomes, representing possible 
combination of hardening strategies HST. In each generation, every strategy in a population is 
evaluated by the fitness selection based on harden cost C(HST) and network risk PR(HST). 
The selection is determined by a fitness based crowd distance metric to preserve the diversity 
of individuals.  Those individuals will experience several rounds of selection, crossover, and 
mutation until a set of Pareto optima is created. Particularly, we adopt an elitist preservation 
strategy to preserve the best individual in every genetic process and directly copied it to the 
next generation. This strategy can protect the elitist individual from being decomposed by the 
crossover and mutation operator. The elitist preservation strategy is also able to maintain the 
global convergence as has been proved by Rudolph [23]. The procedure of proposed approach 
is shown in Fig. 3.  

 
Populate initial hardening set 

population[0] by exploit edges 
{e12,e23,…,emn}

HSTbest=Best fitness(population[i])

population[i+1]=mutation(crossover(s
election(population[i]/HSTbest)+HSTbest

meet algorithm stop 
condition 

i++

Output:{ HSTbest,C(HST),RG(HST)}

No

Yes

       elitist
  preservation

 
 

Fig. 3. Block diagram of our approach 
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4.1 Chromosome Coding 
The algorithm starts by generating an initial population of chromosomes. We adopt the binary 
encoding format and define the implementation of security countermeasures on exploit edges 
as the genes of chromosomes. Fig. 4 shows a sample chromosome of the attack graph in 
Section 3. 
 

1 1 0 1 0 0 0 11

Sample chromosome

e12

1 eij is hardened by defenders

0 eij is not hardened by defenders

e34e13 e27 e46e45 e78e57 e68

HST=

 
Fig. 4. Sample chromosome of nine exploit edges 

 
This sample chromosome is encoded as HST= {110100101} for the risk flow attack graph 

of nine exploit edges. Those genes encoded by ‘1’ represent edges that are hardened by 
defenders. On the contrary, the ‘0’ genes stand for unhandled edges. 

4.2 Initial Population 
We populate the initial population population[0] by harden strategy set 

1 2{ , ,..., }lHST HST HST=HST , where sizeof( [0]) card( )population l= =HST . Here l is an input 
parameter of genetic algorithm. And each chromosome in population[0] is encoded as a binary 
string by the above chromosome coding scheme, where 1 2( , ,..., ),1i hHST ST ST ST i l= ≤ ≤ . The 
values of binary strings are initialized randomly without loss of generality. 

4.3 Objective Function 
As mentioned before, defenders are always faced with the challenge to reduce network risk as 
much as possible within a fixed budget. Thus, the two objective functions consist of security 
control cost C(HST) and network risk PR(HST): 
 

 1

1 [1, ]\{ }

min ( ) ( )

min ( ) ( ( )* * (1 ))
i i k

h

i i
i

m

AP AP AP
i k m i

C HST C ST
obj

PR HST R HST p p

=

= ∈


== 

 = −


∑

∑ ∏
                                   (7) 

4.4 Fitness Selection 
In order to guarantee the diversity of individuals and the uniformity of non-inferior solutions, 
we performed a crowd-distance selection by a 2-Tournament strategy in our work. The 
selection procedure can be divided into three steps: 
 rank the individuals: for individual x in population[t], [ , ] 1 t

xrank x t d= + , 
where t

xd stands for the count of individual y , that {1,2}, ( ) ( )i ii obj y obj x∀ ∈ ≤ and 
{1,2}, ( ) ( )j jj obj y obj x∃ ∈ < . 
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 sort within a rank: sort individuals in the same rank by descending order of objective 
function PR(HST); 
 crowd distance selection: calculate the crowd distance of individual x 

where 2

1
( ) | ( 1) ( 1) |i i

i
dist x obj x obj x

=
= − − +∑ . And the selection of individuals abides by the 

principle that if [ , ] [ , ]rank x t rank y t< , or [ , ] [ , ]rank x t rank y t= but ( ) ( )dist x dist y> , then x will be 
selected. 

It’s worth noting that the non-inferior individuals in each population will be preserved as 
elite individuals, whose selection probabilities are ‘1’. 

4.5 Crossover 
Taking L as the length of chromosome, we perform a two point crossover process by 
generating two random integers m and n within the interval [1, L]. Suppose there are two 
parent chromosomes to perform a two point crossover. The function selects: 

- vector entries numbered less than or equal to m from the first parent chromosome; 
- vector entries numbered from m+1 to n, inclusive, from the second parent chromosome; 
- vector entries numbered greater than n from the first parent chromosome; 
As depicted above, three intervals are selected respectively from two parents to form a 

single gene as the child chromosome. The two point crossover process is illustrated in Fig. 5: 
 

1 1 0 1 0 0 0 11

1 0 1 1 0 1 1 10

crossover point 1 crossover point 2

Parent 
chromosome A

Parent 
chromosome B

1 1 0 1 0 1 0Child 
chromosome 0 1  

 
Fig. 5. Two point crossover process 

 
For example, the parent chromosomes in Fig. 5 are {110100101} and {101101011}. If the 

crossover points {m, n} are set to {3, 7}, the child chromosome of {110101001} is achieved. 

4.6 Mutation 
We perform a two-step Uniform Mutation process. First of all, a fraction of the vector entries 
of an individual is selected for mutation, where each entry has a probability rate r of being 
mutated. The default rate is set to r=0.01 and can be adjusted according to the performance of 
algorithm. In the second step, genes on each selected entry is replaced by the opposite value. 

5. Experiments and Analysis 
Taking the example network given in Section 3 as a scenario, we present some numerical 
results about the proposed method to evaluate its feasibility and effectiveness. The 
experimental implementation of our approach mainly uses a genetic algorithm toolbox gatbx 
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[24] developed by University of Sheffield for Matlab of version R2011b. The experiments are 
performed on a PC with 2.3GHz Intel(R) Core(TM) i5-2410M CPU with 4G RAM running 
Windows 7 Ultimate Operating System. The performed experiments include: A) the 
evolutionary process of harden cost and network risk; B) average distance between individuals 
(harden strategies) during evolution; C) rank histogram of individuals in each Pareto tier; D) 
Pareto frontier of optimal harden strategy for cost and risk and E) Scalability of the 
multi-objective genetic algorithm. 
The simulation parameters are listed in Table 4. 
 

Table 4. Simulation parameters 
Problem Formulation objective function Formula (4) 

number of variables 9 
Population population type bit string 

population size 100 
Selection selection function tournament 

tournament size 2 
Crossover crossover function two-point 

crossover fraction 0.6 
Mutation mutation function uniform 

mutation rate 0.01 
Multi-objective Setting distance measure function distance crowding 

pareto front population fraction 0.35 
Stopping Criterion number of generation 100 

 
The sample risk flow attack graph is a 8-node graph, with 9 valid exploit edges. Our 

simulation take an 8 8×  weighted matrix 8 8[ ]ijR r ×= to represent the sample attack graph, 
where 

 

1

1 [1, ]\{ }

min ( ) ( )

min ( ) ( ( )* * (1 ))
i i k

h

i i
i

m

AP AP AP
i k m i

C HST C ST
obj

PR HST R HST p p

=

= ∈

 == 
 = −


∑

∑ ∏
 

 
For the convenience of simulation, the nonzero values of ijr  are generated randomly 

within the interval of (0, 1). Upon initialization, our simulation encode the harden strategy 
HST into a 9-bit string with the population size of 100. And other essential parameters of this 
multi-objective GA approach can be found in Table 4. 

 

5.1 Value Trend of Objective Functions 
After 100 generations of selection, crossover and mutation, we can obtain the value trend of 
two objective functions in Fig. 6. 
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Fig. 6. Value trend of objective functions 

 
Fig. 6 depicts the trend of the two objective functions: PR(HST) and C(HST) over 

generation.  As shown in Fig. 6, the solid line with marker ‘+’ represents risk value PR(HST), 
and the dotted line marked by ‘*’ stands for harden cost C(HST). In the 100-generation 
evolutionary process, these two objective functions are optimized by the genetic process 
described in Section 3. It’s worth noting that, every time when the harden cost reaches a peak 
value, the corresponding risk value falls to a low point, and vice versa. Obviously in a real case, 
the more effort defenders spent, the less risk will remain in network. It can be learned from this 
trend that the determination of optimal harden strategy is not a simple maximize or minimize 
problem. Therefore, we adopt a Pareto optima set approach to work out the optimal solutions. 

5.2 Average Distance between Individuals 
When determining defense strategies, security analysts always need to prioritize the 
alternatives and apply the most efficient ones. Due to the high similarity of possible hardening 
strategy combinations, our approach enforces a diversity-preserving mechanism based on a 
crowding distance metric. This metric for an individual is the sum of the average side-lengths 
of the cuboid generated by its neighboring individuals in objective space. The value of average 
distance metric over generation is shown in Fig. 7. 
 

 
Fig. 7. Average distance between individuals 
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As depicted in Fig. 7, the average distance of individuals varies within the ranges of 0.3 to 
1.9, and slowly converges from around 2 to 1.15 in 100 generations. At the beginning of 
simulation, the average distances change around 2, by this time, there’s only few non-inferior 
solutions, i.e. optimal hardening strategies in the solution space. With the enforcement of 
crowd distance selection, individuals with lower rank and larger crowd distance are given 
more preference. Thereby forcing the mechanism to search in the area with lesser density in 
the solution space. After 100 generations of evolution, the hardening strategies with better 
performances have been obtained. Meanwhile, the average distance between individuals 
converges to 1.15 at the stopping criterion of 100 generation. 

5.3 Distribution of Optimal Solutions 
As the consequence of generations of selection, crossover and mutation, the hardening 
strategies in the solution space are divided into several ranks according to their performances. 
These ranks are known as Pareto tiers, which give an intuitive view of the distribution of 
individuals. The fraction of individuals in each Pareto tier is shown in Fig. 8 as a rank 
histogram. 

 
Fig. 8. Rank histogram of Pareto tiers 

 
As depicted in Fig. 8, the individuals are partitioned into 11 ranks according to their 

performances. For example, in Fig. 8, there are 10 individuals in Rank 5, which are dominated 
by Rank {i|i<5}, meaning that given arbitrary hardening strategy HSTx and HSTy in Rank 5 
and Rank (i<5), respectively, the following relation holds: 
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Those individuals in Rank 1 are best, which are also known as the non-inferior solutions. In 

our experiment population, there are 12 individuals in Rank 1. And these 12 non-inferior 
harden strategy solutions form the Pareto frontier of our multi-objective optimization. Fig. 9 
plots the function values for all non-inferior individuals. 
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Fig. 9. Distribution of optimal hardening strategies (Pareto front) 

 
As is shown in Fig. 9, the 12 optimal strategies are denoted by marker ‘’. These 

individuals are in Rank 1 that is not dominated by any rank. The hardening strategies in Pareto 
front provide security analysts with an optimal decision set to choose from, depending on the 
actual optimization goals. For example, the five annotations in Fig. 9 correspond to the 
following optimization goals, from left to right: 
 Goal 1: minimize network risk without cost constraint 
 Goal 2: minimize the weighted sum of harden cost and network risk, 

* ( ) * ( )PR HST C HSTα β+ , where 0.9α = and 0.1β = ; 
 Goal 3: given cost budget of 1.5, minimize network risk; 
 Goal 4: given risk constraint of 0.8, minimize harden cost; 
 Goal 5: minimize harden cost without risk constraint. 

The corresponding bit string value of harden strategies and numeric result of risk and cost 
can be seen in Table 5. 
 

Table 5. Pareto non-inferior solutions 
HST risk cost e12 e13 e34 e27 e45 e46 e57 e78 e68 Goal 

1 0.5922 1.8802 1 1 1 1 0 0 0 0 1  
2 0.7847 1.0360 0 1 1 1 0 0 0 1 1  
3 0.9113 0 0 0 0 0 0 0 0 0 0 5 
4 0.7199 1.414 0 1 1 0 1 1 1 1 0  
5 0.7462 1.2724 0 0 0 0 1 1 0 0 1  
6 0.3959 3.5415 1 1 1 0 1 1 1 1 0 1 
7 0.8758 0.1799 0 0 0 0 0 0 1 0 1  
8 0.4387 2.5381 1 1 1 0 1 1 0 1 0  
9 0.4545 1.9006 1 1 1 0 1 1 1 1 0 2 

10 0.7933 1.0225 0 0 1 1 1 1 0 0 0  
11 0.6484 1.5796 1 0 0 0 1 1 1 1 1 3 
12 0.7987 0.8373 0 1 1 0 0 1 1 0 0 4 

5.4 Scalability 
As stated in Section 3, we use the risk flow attack graph in Fig. 2 to illustrate our 
multi-objective genetic algorithm. The graph model is relatively simple but practical. Because 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 5, May 2015                                      1935 

taking the intruders’ attack pattern into consideration, an adversary always tend to limit the 
attack process in as few steps as possible to avoid exposure. Moreover, we conduct a series of 
experiments to verify the scalability of our method. The result is shown in Fig. 10. 
 

 
Fig. 10. Time complexity of our genetic algorithm over scale 

 
As depicted in Fig. 10, we computed the execution times for working out optimal 

hardening strategies in 6 risk flow attack graphs with similar structures from 50 to 300 nodes. 
The solid line in Fig. 10 show the tendency of increasing time complexity of our 
multi-objective genetic algorithm. The time complexity experiences an acceptable trend of 
modest increasing over scale, which verifies the feasibility and scalability of our method. 

5. Conclusion 
The risk flow attack graph based approach presented in this paper models vulnerabilities and 
quantifies network risk by a multi-objective GA solver. By means of this strategy, network 
security risk is calculated by an iterative process according to two attacker prototypes defined 
in the attack graph. The metrics of network risk and harden cost are taken as objective 
functions to be optimized, which are two non-ignorable elements on security analysts’ side.  
Compared with existing security hardening methods, this work has the following differences: 

1) The method of quantifying risk using the risk flow attack graph in our approach is 
different from those using traditional quantization methods; 

2) The approach handles security hardening problem in a multi-objective optimization 
way than simple weighting combination of statistical security data, such as harden cost, 
network risk, network reliability, etc. 

As we all know, that risk will always conceal in a network. Once an exploit occurs, the latent 
risk will be brought to the table, causing defenders to take preventive actions. These measures 
will in turn prompt adversaries to make improvements of their ways of attacks. Thus, in future 
work, the dynamic relationship between security hardening strategies and attack behaviors 
will be researched on the basis of this work. More network factors which could affect security 
risk to will be studied to improve and refine our approach, such as concealment of attackers 
and risk threshold. Furthermore, we would be interested in analyzing large-scale attack 
scenarios to test the performance and scalability of proposed approach. 
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