네트워크-온-칩 (Network-on-Chip, NoC)에서 임계경로 문제를 개선하기 위해 라우터에 라디오 주파수 (RF) 모듈을 집적하는 무선 네트워크-온-칩(Wireless Network-on-Chip, WNoC)은 코어와 무선 인터페이스 라우터 (Wireless Interface Router, WIR)의 매핑 정보에 따라 통신량이 많은 코어간의 임계경로가 변화하여 지연시간에 악영향을 줄 수 있다. 본 논문에서는 코어들이 서브넷을 구성하는 small world 구조 WNoC에서 지연시간을 최적화하기 위해 코어 간의 통신량을 고려한 유전알고리즘(Genetic Algorithm, GA) 기반 코어 및 WIR의 매핑 기법을 제안하였다. 제안한 기법이 통신량이 많은 코어간의 임계경로를 최적화할 수 있도록 하였다. 모의실험 결과를 통해 무작위 매핑과 비교하여 제안하는 기법이 $4{\times}4$ 메시 기반 small world 구조에서 지연시간을 평균 33% 감소시키는 것을 확인하였다.
신경회로망의 학습에 널리 사용되고 있는 오차역전파 알고리즘은 최급하강법을 기초로 하고 있기 때문에 초기값에 따라서는 극소값에 떨어지거나, 신경회로망을 학습시킬 때 중간층 유닛수를 얼마로 설정하는 등의 문제점이 있다. 따라서 이러한 문제점을 해결하기 위하여, 본 논문에서는 3비트 패리티 판별을 위하여 신경회로망의 학습에 교차법, 돌연변이법에 새로운 기법을 도입한 개량형 유전적 알고리즘을 제안한다. 본 논문에서는 세대차이, 중간층 유닛수의 차이, 집단의 개체수의 차이에 대하여 실험을 실시하여, 본 방식이 학습 속도의 면에서 유효하다는 것을 나타낸다.
본 논문에서는 제안한 알고리즘은 이전 유전 알고리즘의 분산처리를 위해 라우터 그룹 단위인 셀을 도입하였다. 셀 단위로 유전 알고리즘을 시행하여 전체 네트워크의 탐색 지연시간을 줄이는 방법을 제시하였다. 또한, 실험을 통하여 기존 최적경로 알고리즘인 Dijkstra 알고리즘에서 네트워크가 손상되었을 경우 제안한 알고리즘에는 대체 경로 설정의 연산시간이 단축되었으며 손상된 네트워크의 셀 안에서 2순위의 경로를 가지고 있으므로 Dijkstra 알고리즘보다 신속하게 대체경로를 설정하도록 설계되었다. 이는 제안한 알고리즘이 네트워크상에서 Dijkstra 알고리즘이 손상되었을 경우 대체 경로설정을 보완할 수 있음을 확인하였다.
본 논문에서는 메쉬 네트워크의 이동노드에 대해 기존의 유전알고리즘을 이용한 빔형성과 같은 성능을 가지면서 빠른 수렴속도를 가지고 지역해에 빠지지 않는 개선된 유전알고리즘을 제안한다. 제안한 빔형성 유전알고리즘은 빠른 수렴속도를 얻기 위해서 교배과정에서 적합도가 높은 염색체의 일정비율을 추출하고 지역해에 빠지는 것을 방지하기 위해 하위 염색체로 교배에 사용하였다. 그리고 적합도 측정용 빔형성의 기준 빔패턴을 가우시안 함수를 이용하여 수렴속도를 더욱 빠르게 하였다. 전산모의 실험을 통하여 제안한 빔형성 유전알고리즘이 기존의 빔형성 유전알고리즘 방식과 비교하여 약 20%의 빠른 수렴속도가 향상되었음을 보였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제1권1호
/
pp.87-94
/
2001
Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.755-778
/
2024
In recent years, the number of devices being connected to the internet has grown enormously, as has the intrusive behavior in the network. Thus, it is important for intrusion detection systems to report all intrusive behavior. Using deep learning and machine learning algorithms, intrusion detection systems are able to perform well in identifying attacks. However, the concern with these deep learning algorithms is their inability to identify a suitable network based on traffic volume, which requires manual changing of hyperparameters, which consumes a lot of time and effort. So, to address this, this paper offers a solution using the extended compact genetic algorithm for the automatic tuning of the hyperparameters. The novelty in this work comes in the form of modeling the problem of identifying attacks as a multi-objective optimization problem and the usage of linkage learning for solving the optimization problem. The solution is obtained using the feature map-based Convolutional Neural Network that gets encoded into genes, and using the extended compact genetic algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017 and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations are done to demonstrate the suitability of this model in a fog environment.
In recent years, several researchers have presented the extensive research reports on network optimization problems. In our real life applications, many important network problems are typically formulated as a Maximum flow model (MXF) or a Minimum Cost flow model (MCF). In this paper, we propose a Genetic Algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including MXF and MCF models(MXF/MCF).
In order to approximate a nonlinear function, modular wavelet networks combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural networks and kind of modular network. Modular wavelet networks provide better approximating performance than conventional one. In this paper, we propose an effective method to construct an optimal modualr wavelet network using genetic algorithm. This is verified through experimental results.
Usually, the Evolutionary Algorithms(EAs) are considered more efficient for optimal, system design because EAs can provide higher opportunity for obtaining the global optimal solution. This paper presents a mechanism of co-evolution consists of the two genetic algorithms(GAs). This mechanism includes host populations and parasite populations. These two populations are closely related to each other, and the parasite populations plays an important role of searching for useful schema in host populations. Host population represented by feedforward neural network and the result of co-evolution we will find the optimal structure of the neural network. We used the genetic algorithm that search the structure of the feedforward neural network, and evolution strategies which train the weight of neuron, and optimize the net structure. The validity and effectiveness of the proposed method is exemplified on the stabilization and position control of the inverted-pendulum system.
A novel approach has been used to identify functional interactions relevant to human disease. Using high-throughput human-yeast genetic interaction screens, a first draft of disease interactome was obtained. This was achieved by first searching for candidate human disease genes that confer toxicity in yeast, and second, identifying modulators of toxicity. This study found potentially disease-relevant interactions by analyzing the network of functional interactions and focusing on genes implicated in amyotrophic lateral sclerosis (ALS), for example. In the subsequent proof-of-concept study focused on ALS, similar functional relationships between a specific kinase and ALS-associated genes were observed in mammalian cells and zebrafish, supporting findings in human-yeast genetic interaction screens. Results of combined analyses highlighted MAP2K5 kinase as a potential therapeutic target in ALS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.