• Title/Summary/Keyword: Genetic communication

Search Result 391, Processing Time 0.034 seconds

Genetic Algorithm-Based Approaches for Enhancing Multi-UAV Route Planning

  • Mohammed Abdulhakim Al-Absi;Hoon Jae Lee;Young-sil Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.8-19
    • /
    • 2023
  • This paper presents advancement in multi- unmanned aerial vehicle (UAV) cooperative area surveillance, focusing on optimizing UAV route planning through the application of genetic algorithms. Addressing the complexities of comprehensive coverage, two real-time dynamic path planning methods are introduced, leveraging genetic algorithms to enhance surveillance efficiency while accounting for flight constraints. These methodologies adapt multi-UAV routes by encoding turning angles and employing coverage-driven fitness functions, facilitating real-time monitoring optimization. The paper introduces a novel path planning model for scenarios where UAVs navigate collaboratively without predetermined destinations during regional surveillance. Empirical evaluations confirm the effectiveness of the proposed methods, showcasing improved coverage and heightened efficiency in multi-UAV path planning. Furthermore, we introduce innovative optimization strategies, (Foresightedness and Multi-step) offering distinct trade-offs between solution quality and computational time. This research contributes innovative solutions to the intricate challenges of cooperative area surveillance, showcasing the transformative potential of genetic algorithms in multi-UAV technology. By enabling smarter route planning, these methods underscore the feasibility of more efficient, adaptable, and intelligent cooperative surveillance missions.

Routing Strategy using Genetic Algorithms In Mesh-Like Optical Networks (메쉬형 광 네트워크에서 유전자 알고리즘을 이용한 라우팅 전략)

  • Park, Yong-Kyu;Wee, Kyu-Bum;Hong, Man-Pyo;Yeh, Hong-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.643-648
    • /
    • 2000
  • 본 논문에서는 광 네트워크에서 방송(broadcasting)을 위해 유전자 알고리즘을 이용한 라우팅 전략(routing strategy)을 제시하고 있다. 논문에서 제시하는 유전자 알고리즘(genetic algorithms)은 메쉬형(mesh-like) 광 네트워크의 각 링크에 적은 수의 광경로(lightpath)가 통과하도록 하여 네트워크 전체 링크의 사용빈도를 감소시키고 광경로들이 특정 링크로 집중되는 현상을 감소시켜 파장의 수가 고른 노드들을 네트워크에 위치시키므로 네트워크의 효율을 증가시키는 라우팅 전략을 제시할 수 있음을 보이고 있다.

  • PDF

Optimization of a Composite Laminated Structure by Network-Based Genetic Algorithm

  • Park, Jung-Sun;Song, Seok-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1033-1038
    • /
    • 2002
  • Genetic alsorithm (GA) , compared to the gradient-based optimization, has advantages of convergence to a global optimized solution. The genetic algorithm requires so many number of analyses that may cause high computational cost for genetic search. This paper proposes a personal computer network programming based on TCP/IP protocol and client-server model using socket, to improve processing speed of the genetic algorithm for optimization of composite laminated structures. By distributed processing for the generated population, improvement in processing speed has been obtained. Consequently, usage of network-based genetic algorithm with the faster network communication speed will be a very valuable tool for the discrete optimization of large scale and complex structures requiring high computational cost.

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

Fast Optimization by Queen-bee Evolution and Derivative Evaluation in Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.310-315
    • /
    • 2005
  • This paper proposes a fast optimization method by combining queen-bee evolution and derivative evaluation in genetic algorithms. These two operations make it possible for genetic algorithms to focus on highly fitted individuals and rapidly evolved individuals, respectively. Even though the two operations can also increase the probability that genetic algorithms fall into premature convergence phenomenon, that can be controlled by strong mutation rates. That is, the two operations and the strong mutation strengthen exploitation and exploration of the genetic algorithms, respectively. As a result, the genetic algorithm employing queen-bee evolution and derivative evaluation finds optimum solutions more quickly than those employing one of them. This was proved by experiments with one pattern matching problem and two function optimization problems.

A Genetic-Algorithm-Based Optimized Clustering for Energy-Efficient Routing in MWSN

  • Sara, Getsy S.;Devi, S. Prasanna;Sridharan, D.
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.922-931
    • /
    • 2012
  • With the increasing demands for mobile wireless sensor networks in recent years, designing an energy-efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near-optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near-optimal energy-efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy-efficient routing technique produces a longer network lifetime and achieves better energy efficiency.

Genetic Algorithm Based Decentralized Task Assignment for Multiple Unmanned Aerial Vehicles in Dynamic Environments

  • Choi, Hyun-Jin;Kim, You-Dan;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.163-174
    • /
    • 2011
  • Task assignments of multiple unmanned aerial vehicles (UAVs) are examined. The phrase "task assignment" comprises the decision making procedures of a UAV group. In this study, an on-line decentralized task assignment algorithm is proposed for an autonomous UAV group. The proposed method is divided into two stages: an order optimization stage and a communications and negotiation stage. A genetic algorithm and negotiation strategy based on one-to-one communication is adopted for each stage. Through the proposed algorithm, decentralized task assignments can be applied to dynamic environments in which sensing range and communication are limited. The performance of the proposed algorithm is verified by performing numerical simulations.

Optimization of UHF RFID Tag Antennas Using a Genetic Algorithm

  • Kim, Goo-Jo;Chung, You-Chung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.263-266
    • /
    • 2005
  • An UHF ($860{\sim}960MHz$) RFID tag antenna is optimized and designed using a genetic algorithm (GA). The tag antenna impedance should be matched to the conjugate of the impedance of the tag IC Chip. The chip impedance has real and capacitive imaginary parts due to the parasitic capacitance of the RFID chip. A GA linked with a commercially available antenna simulation program optimizes the UHF $860{\sim}960\;MHz$ tag antenna to match a commercially available RFID chip. This method shows that any RFID antenna can be designed for any commercial RFID chip with any impedance.

  • PDF

Low Power Module selection using Genetic Algorithm (유전자 알고리듬을 사용한 저전력 모듈 선택)

  • Jeon, Jong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • In this paper, we present a optimal module selection using genetic algorithm under the power, area, delay constraint. The proposed algorithm use the way of optimal module selection it will be able to minimize power consumption. In the comparison and experimental results, The proposed application algorithm reduce maximum power saving up to 26.9% comparing to previous non application algorithm, and reduce minimum power saving up to 9.0%. It also show the average power saving up to 15.525% and proved the power saving efficiency.

  • PDF

Optimizing the Net Gain of a Raman-EDFA Hybrid Optical Amplifier using a Genetic Algorithm

  • Singh, Simranjit;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.442-448
    • /
    • 2014
  • For the first time, a novel analytical model of the net gain for a Raman-EDFA hybrid optical amplifier (HOA) is proposed and its various parameters optimized using a genetic algorithm. Our method has been shown to be robust in the simultaneous analysis of multiple parameters (Raman length, EDFA length, and pump powers) to obtain large gain. The optimized HOA is further investigated at the system level for the scenario of a 50-channel DWDM system with 0.2-nm channel spacing. With an optimized HOA, a flat gain of >17 dB is obtained over the effective ITU-T wavelength grid with a variation of less than 1.5 dB, without using any gain-flattening technique. The obtained noise figure is also the lowest value ever reported for a Raman-EDFA HOA at reduced channel spacing.