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Abstract

Task assignments of multiple unmanned aerial vehicles (UAVs) are examined. The phrase “task assignment” comprises the 

decision making procedures of a UAV group. In this study, an on-line decentralized task assignment algorithm is proposed for 

an autonomous UAV group. The proposed method is divided into two stages: an order optimization stage and a communications 

and negotiation stage. A genetic algorithm and negotiation strategy based on one-to-one communication is adopted for each 

stage. Through the proposed algorithm, decentralized task assignments can be applied to dynamic environments in which 

sensing range and communication are limited. The performance of the proposed algorithm is verified by performing numerical 

simulations.
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1. Introduction

The operation of multiple UAVs requires decision 

making processes such as task planning (Murray, 2007). 

Task assignment has been regarded as a combinatorial 

optimization problem in which combinations between UAVs 

and various tasks must be deciphered (Papadimitriou and 

Steiglitz, 1982). Examples of combinatorial optimization 

problems include the traveling salesman problem (TSP) 

or the vehicle routing problem. Finding exact solutions are 

very difficult because combinatorial optimization problems 

possess non-deterministic polynomial time (NP), which 

results in computational complexity. Two approaches 

have been developed to overcome this complexity. One 

approach is a mathematical programming approach such 

as mixed integer linear programming (MILP) (Chandler et 

al., 2002; Richards et al., 2002; Schumacher et al., 2004). The 

second approach is a meta-heuristic algorithm such as the 

genetic algorithm (GA) (Eun and Bang, 2009; Potvin, 1996; 

Shima et al., 2006) and particle swarm optimization (Cruz 

et al., 2004). Mathematical programming approaches often 

provide solutions that are better in quality than solutions 

derived from meta-heuristic algorithms, but mathematical 

programming usually requires much more computation 

time than its counterpart. Conversely, the meta-heuristic 

approach obtains solutions quickly, however the quality of 

the solution may be poor. 

Communication among multiple UAVs within dynamic 

environments also presents difficulties. Off-line task 

assignment sufficiently allows UAVs to perform missions in 

stationary environments. However, on-line task assignment 

becomes highly necessary in changing environments. If all 

UAVs share information, task assignment can be regarded as 

centralized. 

The implementation of on-line task assignments to 

centralized systems is difficult because communication 

and computation loads. The centralized systems gather task 

information of each UAV and process the information to find 

an effective task assignment. Therefore, the amount of the 

information is enormous to the centralized systems. In actual 
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missions, communication between UAVs is restrictive. To 

compensate for communication restrictions, decentralized 

and distributed task assignment approaches have been 

developed (Alighanbari and How, 2005). Decentralization 

schemes require specified communication structures, such 

as an auction scheme or negotiation scheme. Furthermore, 

each UAV within a dynamic environment must decide and 

communicate the task plan.

This paper describes a decentralized task assignment 

algorithm for multiple UAVs within a dynamic environment. 

Each UAV is assumed to exchange environment information 

with other UAVs. The balance of the information between 

UAVs can be broken. Thus, a communication strategy based 

on negotiation (Sujit et al., 2007) is adopted to manage 

unbalanced situations. The strategy is divided into two stages. 

Stage I is the order optimization stage, and Stage II is the 

communications and negotiation stage. In Stage I, each UAV 

adjusts its task order, which in turn reduces costs by using 

GA. Task exchange occurs at Stage II. On-line decentralized 

task assignment can be performed through these stages. 

Each UAV is autonomously assigned proper tasks. 

This paper is organized as follows. In Section 2, the problem 

is formulated by considering the task assignment scenario, 

combinatorial optimization, and path planning with cost 

prediction. In Section 3, the decentralized task assignment 

algorithm is proposed, which consists of a genetic algorithm 

for the first stage and negotiation for the second stage. 

Section 4 explains the results from the numerical simulation. 

Finally, Section 5 concludes the study.

2. �Task Assignment Problem of Multiple 
UAVs

2.1 Missions for multiple UAVs

UAVs are widely used for surveillance and reconnaissance 

missions. Wide area search and munitions (WASM) or 

intelligence, search and reconnaissance (ISR) are examples 

of such missions incorporating the multiple UAVs.

This study documents the task assignment for a specified 

mission composed of multi-targets and multi-tasks. First, 

multiple UAVs and several known restricted regions were 

carefully evaluated. Then, task assignment was performed 

with respect to certain path constraints. The WASM mission 

was chosen that the UAVs would perform in this study. 

Thus, two sub-tasks for each target were designated as 

“Classification with Attack” and “Verification”. Thus, the total 

number of tasks was twice the number of targets. Accordingly, 

the UAV group was expected to sufficiently perform multiple 

tasks, as well as adjust the task order.

2.2 Combinatorial Optimization Problem

Multiple UAV task assignment is considered a 

combinatorial optimization problem. Combinatorial 

optimization possesses NP-hard computational complexity 

(Papadimitriou and Steiglitz, 1982); thus, a specified method 

for obtaining an optimal solution does not exist. The only 

known method is to search all possible cases. Typical search 

methods include the exact search method or the heuristic 

search method.

A formal combinatorial optimization problem follows a 

certain formulation. For an Nv amount of UAVs, the UAVs set 

V can be defined as follows.

(1)

The tasks set T for Nt tasks are defined as follows.

(2)

Now, the performance index and constraints are 

formulated as

min 
(3)

subject to

(4)

(5)

(6)

and

(7)

where cv is the sequential task order of the v-th UAV with 

respect to the following binary decision vector xv

(8)

And Nt is the number of total tasks, and li is an additional 

function be satisfied by the target i, such as timing constraints. 

Complex subscripted problem formulation is used for 

multiple UAVs and multiple tasks. The performance index cv 

is a function of the sequential task order cv of the v-th UAV. In 

this study, a cumulative flight time of all the UAVs was taken 

as the performance index because the flight time is related 

to the endurance of the UAV and distances between the 

UAVs and the targets. Eq. (4) signifies that each task should 
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be assigned at once. Additional inequality conditions can 

be composed, as given in Eq. (6). These constraints can be 

adjusted according to the problem.

2.3 Path planning with cost prediction

The expenses incurred from each UAV must be predicted 

in order to assign multiple tasks to multiple UAVs. A path 

planning algorithm is required when obstacles and restricted 

regions exist. The cost is then predicted after evaluating the 

path planning result. Cost can change according to the task 

order, even if the assigned tasks are same.

In general, a UAV contains kinematic constraints on 

the turn radius and velocity. Thus, the motion of a UAV is 

described by the following 2-dimensional kinematic model:	

(9)

where the control input is bounded by |u|≤1. Velocity V is 

assumed to be a constant, and the minimum turn radius Rmin 

is:

(10)

For this case, the distance between nodes depends on the 

heading angle of the UAV. It is also difficult to applying the 

model described by Eq. (9) to task assignments is difficult 

because it requires exhausting computational efforts. In 

order to reduce the complexity, path planning is separated 

from task assignment. The distance between node i and node 

j is approximated through a Euclidean distance expression 

and the turn radius Rmin. Therefore, the flight time between 

node i and node j is approximated as follows.

(11)

(12)

where ni is the i-th node, nj is the j-th node, and (xi, yi) 

and (xj, yj) are the geometric positions of the corresponding 

nodes, respectively.

A visibility graph and A* algorithm are then adopted 

for path planning and cost prediction. The visibility graph 

comprises a general visibility graph algorithm (Choset, 2005) 

based on fixed obstacles with safety margins, as shown in Fig. 

1. For computational efficiency, cost look-up tables for (i) 

the target to target and (ii) the UAV to target are constructed 

and utilized as shown in Fig. 2. The shortest path between 

nodes is required in order to evaluate costs. In this study, we 

adopted the A* algorithm, which provides the shortest path 

that avoids the obstacle. The A* algorithm is complete and 

will always find a solution if the given graph structure has 

the solution. The initial and goal points in Fig. 1 denote the 

nodes of two targets. Therefore, the A* algorithm should be 

performed to all combinations of two targets, and the look-

up table as shown in Fig. 2 should be pre-defined. These 

tables are updated and expanded whenever the costs are 

changed or new tasks are found. The heuristic term of the A* 

algorithm is set as the Euclidean distance from the node to 

goal node, and convex obstacle regions are only considered 

when obstacles exist. 

Figure 3 shows the path planning function. If a new target 

is added, table (i) will be updated. Table (ii) is updated 

whenever the UAV is moving. According to the task plan 

obtained by the task assignment, the waypoint set of UAV can 

be obtained. Guidance and control is performed according 

to the waypoint set.
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Fig. 2. Look-up tables of (i) target to target and (ii) 
unmanned aerial vehicle to target. 

Fig. 1. Visibility graph.
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Therefore, the number of feasible solutions can be 
reduced by decentralization. However, decentralization 
could possibly violate the optimality of the task 
assignment. 

Each solution set contains a fitness set with respect to 
the cost of each candidate. The solution candidate 
evolves its fitness through the genetic operators. To 
implement the on-line process, a time extended cost 
function is defined as follows. 
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Fig. 4.  Solution candidates of the problem. 

Procedure PathPlanning( ) 
If (new target = 1) 

[V, E] = Visibility(targets) 
Cost_table_i = Update_table_i() 

Cost_table_ii= Update_table_ii() 
[Way_set] = A_star(Task_plan) 
Fig. 3. Path planning algorithm. 

Fig. 3. Path planning algorithm.
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3. Decentralized Task Assignment Using GA

In general, multiple UAVs will perform its mission given 

the prior task assignment. However, UAVs require on-line task 

assignment for changing environments because the UAV must 

adjust its assigned tasks. Possible on-line task assignment 

schemes include the decentralized task assignment scheme 

and the distributed task assignment scheme. This study 

evaluated a fully decentralized task assignment algorithm.

For decentralized task assignments, communication 

between UAVs should be dealt with. A UAV group requires a 

specified communication topology; thus, methods for solving 

the conventional combinatorial optimization problem are 

not appropriate for the decentralized task assignment. The 

decentralized task assignment adopts the GA in order to 

relieve the computational load and to adjust tasks according 

to the communication between UAVs. GA is a meta-

heuristic algorithm that solves the optimization problem. 

Communication topology is a one-to-one communication 

based on negotiation for the fully decentralized task 

assignment. It is also assumed that there is no base station 

in this study.

Strategy consists of two stages, the order optimization 

stage and the communications and negotiation stage. 

Through these two stages, the UAV is able to adjust its task 

order and exchange the assigned tasks with other UAVs.

3.1 Order optimization stage

Each UAV follows a task order arrangement procedure 

during the order optimization stage. In this stage, each UAV 

adjusts the order of its own tasks. This stage is similar to the 

TSP, and therefore it can be regarded that each UAV solves 

the TSP at the order optimization stage. The GA is adopted 

during this stage. Each UAV has its own solution set, and 

each set experiences improvements due to the GA’s genetic 

operators.

3.1.1 Modified solution set

The solution set is a set of feasible solution candidates 

known as a chromosome in the GA. The solution set is 

expressed as C, and Cn is n-th solution candidate in the set, 

which is similar to C in Eq. (3). Figure 4 shows the solution 

candidates, which are composed of the sequential order 

of the tasks. Each task is represented as Tj, k, where the first 

subscript j∈NNT represents a target and the second subscript 

k∈NN k represents the sub-task of the target.

According to the representations, feasible combination 

number of the solution for all UAVs is given by Shima et al. 

(2006).

(13)

Each UAV should deal with its own task set at the order 

optimization stage. For example, if a UAV has NT targets and 

Nk tasks for each target, the number of combinations will be 

given by

(14)

Therefore, the number of feasible solutions can be 

reduced by decentralization. However, decentralization 

could possibly violate the optimality of the task assignment.

Each solution set contains a fitness set with respect to 

the cost of each candidate. The solution candidate evolves 

its fitness through the genetic operators. To implement the 

on-line process, a time extended cost function is defined as 

follows.

(15)

where t is the elapsed time of the UAV, Cn is the solution 

of the set, and cp is the cost prediction function according to 

the Cn.

Then, the fitness of each solution candidate is formulated 

as follows

(16)

where cw is the cost of the worst case, cb is the cost of the 

best case, cn is the cost of n-th candidate in the set, and ks is 

selection pressure representing the ratio of the best case to 

the worst case. In this study, ks is set as 3.

3.1.2 Genetic operators

The genetic operators consist of selection, crossover, 

mutation, and substitution operators. To generate a new 

solution candidate, these four operators are executed.

A proportionate selection with roulette wheel method is 

adopted as a selection operator. Two solutions are randomly 

chosen according to the fitness, as shown in Fig. 5. These 

selected solutions are pruned and attached to each other 
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represents a target and the second subscript kNk ∈  
represents the sub-task of the target. 

 

 
 

According to the representations, feasible 
combination number of the solution for all UAVs is 
given by Shima et al. (2006). 
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Each UAV should deal with its own task set at the order 
optimization stage. For example, if a UAV has TN  
targets and kN  tasks for each target, the number of 
combinations will be given by 
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Therefore, the number of feasible solutions can be 
reduced by decentralization. However, decentralization 
could possibly violate the optimality of the task 
assignment. 

Each solution set contains a fitness set with respect to 
the cost of each candidate. The solution candidate 
evolves its fitness through the genetic operators. To 
implement the on-line process, a time extended cost 
function is defined as follows. 

 ( ) ( )n p nc t t c C+  (15) 

Fig. 4.  Solution candidates of the problem. 

Procedure PathPlanning( ) 
If (new target = 1) 

[V, E] = Visibility(targets) 
Cost_table_i = Update_table_i() 

Cost_table_ii= Update_table_ii() 
[Way_set] = A_star(Task_plan) 
Fig. 3. Path planning algorithm. 

Fig. 4.  Solution candidates of the problem.
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by the crossover operator as shown in Fig. 6. Thus, the 

order crossover is adopted for the array rearrangement of 

the solution candidate. Mutation is executed by switching 

the order randomly as shown in Fig. 7. It is used for the 

local perturbation of the solution. Finally, substitution is 

performed. Through the recursion of these procedures, 

the task order would be rearranged. Figure 8 shows the 

procedures of the GA.

3.2 Communications and negotiation stage

The following assumptions were made for the process of 

communication between UAVs.

Assumption 1. There are no base stations, and there exists 

no centralized computers in the UAV groups.

Assumption 2. Each communication is restricted to one-

to-one communication based on the negotiation.

Assumption 3. Tasks are only exchanged between two 

UAVs based on the communication.

Assumption 4. Communication limit due to a range limit 

is only considered.

The communication strategy is described as follows based 

on the assumptions above.

1. Synchronize the terminated tasks as well as the 

additional tasks, and take into account the changes in the 

task plan.

2. (UAV v1) Choose and send a task to UAV v2 with the 

reduced cost ∆cm
v1 of UAV v1.

3. (UAV v2) Evaluate the received task and compute the 

increased cost ∆cp
v2 of UAV v2

4. If the sum of the reduced cost of UAV v1 and the increased 

cost of UAV v2 is less than zero, then UAV v2 accepts the task. 

` 

where t  is the elapsed time of the UAV, nC  is the 
solution of the set, and pc  is the cost prediction function 

according to the nC . 
Then, the fitness of each solution candidate is 

formulated as follows 
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where wc  is the cost of the worst case, bc  is the cost of 
the best case, nc  is the cost of -thn  candidate in the set, 
and sk  is selection pressure representing the ratio of the 
best case to the worst case. In this study, sk  is set as 3. 
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Procedure GA( ) 
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Fig. 8. Genetic algorithm (GA).
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Fig. 6. Crossover operator. 

Fig. 5. Selection operator.
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solutions. In this stage, the terminated tasks and the 
newly added tasks are required for synchronization. And, 
the tasks sending reduced cost information are only 
required. 

 
 

 

 
 
If all UAVs are connected, tasks will be distributed 

without duplication. However, rules are required for the 
situation when the communication is cut off. If UAV 
detects new targets, the UAV should behave according 
to the following rules.  

 
Rule 1. If the new target information does not exist in 

the synchronized data, UAV should take all tasks of the 
new target and update the information. 

Rule 2. If the new target information exists in the 
synchronized data, UAV does not include the tasks of 
the target, because other UAV already found the target 
and updated the information into the synchronized data. 

 
If the UAV detects new targets when communication 

is cut off, the UAV should follow the above two rules. 

However, a situation may occur in which each UAV 
assumes the same tasks as the new target when 
communication is cut off. In this case, then UAV should 
follow the following rules. 

 
Rule 3. If a UAV receives the same information of a 

new target as another UAV, but does not have the tasks 
of the new target, the UAV discards the tasks of the new 
target. 

Rule 4. If a UAV has the same information of new 
target as another UAV and has the tasks of the target, the 
UAV will distribute the tasks to another UAV. 

 
And, UAVs should obey the following rule during the 

negotiation step. 
 
Rule 5. When UAVs exchange tasks, the UAV should 

only send its own tasks to another UAV. 
 
The above rules provide non-conflicting assignments 

to UAVs in which unbalanced information is available. 
However, duplication is inevitable when each UAV 
takes and performs the new tasks without 
communication. To avoid the duplication, the following 
condition should be satisfied. 

 
Necessary condition. New target information should 

be transferred and synchronized to all UAVs until 
another UAV performs the task of the new target. 

 
According to the above condition, if a UAV recovers 

the communication, it can perform the mission without 
the duplicating tasks. Therefore, synchronization is the 
most important step for autonomous UAVs. To 
synchronize the unbalanced information, at least 2vC  
times communications are required. 

Through the order optimization stage and the 
communication and negotiation stage, the decentralized 
task assignment can be realized. Note that each UAV 
should be capable of mission planning and 
communicating for autonomous operation. 

Figure 11 shows the main process loop of each UAV. 
Task assignment, path planning, and communication 
procedures can be divided into several modularized 
functions.  

 

Fig. 10. Communication procedures. UAV: unmanned 
aerial vehicle.

Procedure Negotiation( ) 
Synchronize(TerminatedTasks, NewTasks) 
Select a task for sending 
if (send mode) 

Send a task 
Receive the result 
If (UAV 2v  receive the task) 
Update the solution set 

if (receive mode) 
Receive the task 
evaluate the task 
if ( 1 2 0v v

m pc c+ ≤ ) 
accept the task 

else 
reject the task 

Fig. 9. Communication algorithm. UAV: unmanned aerial 
vehicle. Fig. 9. Communication algorithm. UAV: unmanned aerial vehicle.

` 

solutions. In this stage, the terminated tasks and the 
newly added tasks are required for synchronization. And, 
the tasks sending reduced cost information are only 
required. 

 
 

 

 
 
If all UAVs are connected, tasks will be distributed 

without duplication. However, rules are required for the 
situation when the communication is cut off. If UAV 
detects new targets, the UAV should behave according 
to the following rules.  

 
Rule 1. If the new target information does not exist in 

the synchronized data, UAV should take all tasks of the 
new target and update the information. 

Rule 2. If the new target information exists in the 
synchronized data, UAV does not include the tasks of 
the target, because other UAV already found the target 
and updated the information into the synchronized data. 

 
If the UAV detects new targets when communication 

is cut off, the UAV should follow the above two rules. 

However, a situation may occur in which each UAV 
assumes the same tasks as the new target when 
communication is cut off. In this case, then UAV should 
follow the following rules. 

 
Rule 3. If a UAV receives the same information of a 

new target as another UAV, but does not have the tasks 
of the new target, the UAV discards the tasks of the new 
target. 

Rule 4. If a UAV has the same information of new 
target as another UAV and has the tasks of the target, the 
UAV will distribute the tasks to another UAV. 

 
And, UAVs should obey the following rule during the 

negotiation step. 
 
Rule 5. When UAVs exchange tasks, the UAV should 

only send its own tasks to another UAV. 
 
The above rules provide non-conflicting assignments 

to UAVs in which unbalanced information is available. 
However, duplication is inevitable when each UAV 
takes and performs the new tasks without 
communication. To avoid the duplication, the following 
condition should be satisfied. 

 
Necessary condition. New target information should 

be transferred and synchronized to all UAVs until 
another UAV performs the task of the new target. 

 
According to the above condition, if a UAV recovers 

the communication, it can perform the mission without 
the duplicating tasks. Therefore, synchronization is the 
most important step for autonomous UAVs. To 
synchronize the unbalanced information, at least 2vC  
times communications are required. 

Through the order optimization stage and the 
communication and negotiation stage, the decentralized 
task assignment can be realized. Note that each UAV 
should be capable of mission planning and 
communicating for autonomous operation. 

Figure 11 shows the main process loop of each UAV. 
Task assignment, path planning, and communication 
procedures can be divided into several modularized 
functions.  

 

Fig. 10. Communication procedures. UAV: unmanned 
aerial vehicle.

Procedure Negotiation( ) 
Synchronize(TerminatedTasks, NewTasks) 
Select a task for sending 
if (send mode) 

Send a task 
Receive the result 
If (UAV 2v  receive the task) 
Update the solution set 

if (receive mode) 
Receive the task 
evaluate the task 
if ( 1 2 0v v

m pc c+ ≤ ) 
accept the task 

else 
reject the task 

Fig. 9. Communication algorithm. UAV: unmanned aerial 
vehicle. 

Fig. 10. Communication procedures. UAV: unmanned aerial vehicle.

` 

where t  is the elapsed time of the UAV, nC  is the 
solution of the set, and pc  is the cost prediction function 

according to the nC . 
Then, the fitness of each solution candidate is 

formulated as follows 
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where wc  is the cost of the worst case, bc  is the cost of 
the best case, nc  is the cost of -thn  candidate in the set, 
and sk  is selection pressure representing the ratio of the 
best case to the worst case. In this study, sk  is set as 3. 

 
3.1.2 Genetic operators 
The genetic operators consist of selection, crossover, 

mutation, and substitution operators. To generate a new 
solution candidate, these four operators are executed. 

A proportionate section with roulette wheel method is 
adopted as a selection operator. Two solutions are 
randomly chosen according to the fitness, as shown in 
Fig. 5. These selected solutions are pruned and attached 
to each other by the crossover operator as shown in Fig. 
6. Thus, the order crossover is adopted for the array 
rearrangement of the solution candidate. Mutation is 
executed by switching the order randomly as shown in 
Fig. 7. It is used for the local perturbation of the 
solution. Finally, substitution is performed. Through the 
recursion of these procedures, the task order would be 
rearranged. Figure 8 shows the procedures of the GA. 
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where t  is the elapsed time of the UAV, nC  is the 
solution of the set, and pc  is the cost prediction function 

according to the nC . 
Then, the fitness of each solution candidate is 
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where wc  is the cost of the worst case, bc  is the cost of 
the best case, nc  is the cost of -thn  candidate in the set, 
and sk  is selection pressure representing the ratio of the 
best case to the worst case. In this study, sk  is set as 3. 
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where t  is the elapsed time of the UAV, nC  is the 
solution of the set, and pc  is the cost prediction function 
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Otherwise, UAV v2 rejects the task.

5. UAV v2 executes the same process to UAV v1.

Figure 9 shows the procedure of the communication 

algorithm, and Fig. 10 shows the procedures for GA solutions. 

In this stage, the terminated tasks and the newly added tasks 

are required for synchronization. And, the tasks sending 

reduced cost information are only required.

If all UAVs are connected, tasks will be distributed without 

duplication. However, rules are required for the situation 

when the communication is cut off. If UAV detects new 

targets, the UAV should behave according to the following 

rules. 

Rule 1. If the new target information does not exist in 

the synchronized data, UAV should take all tasks of the new 

target and update the information.

Rule 2. If the new target information exists in the 

synchronized data, UAV does not include the tasks of the 

target, because other UAV already found the target and 

updated the information into the synchronized data.

If the UAV detects new targets when communication is cut 

off, the UAV should follow the above two rules. However, a 

situation may occur in which each UAV assumes the same 

tasks as the new target when communication is cut off. In 

this case, then UAV should follow the following rules.

Rule 3. If a UAV receives the same information of a new 

target as another UAV, but it does not have the tasks of the 

new target, the UAV discards the tasks of the new target.

Rule 4. If a UAV has the same information of new target as 

another UAV, and it has the tasks of the target, the UAV will 

distribute the tasks to another UAV.

And, UAVs should obey the following rule during the 

negotiation step.

Rule 5. When UAVs exchange tasks, the UAV should only 

send its own tasks to another UAV.

The above rules provide non-conflicting assignments 

to UAVs in which unbalanced information is available. 

However, duplication is inevitable when each UAV takes and 

performs the new tasks without communication. To avoid 

the duplication, the following condition should be satisfied.

Necessary condition. New target information should be 

transferred and synchronized to all UAVs until another UAV 

performs the task of the new target.

According to the above condition, if a UAV recovers the 

communication, it can perform the mission without the 

duplicating tasks. Therefore, synchronization is the most 

important step for autonomous UAVs. To synchronize the 

unbalanced information, at least vC2 times communications 

are required.

Through the order optimization stage and the 

communication and negotiation stage, the decentralized 

task assignment can be realized. Note that each UAV should 

be capable of mission planning and communicating for 

autonomous operation.

Figure 11 shows the main process loop of each UAV. Task 

assignment, path planning, and communication procedures 

can be divided into several modularized functions. 

3.3 Timing constraints operators

The solution’s task order may be rearranged after the 

communication and optimization stages. However, this 

rearrangement may violate timing constraints, such as the 

individual order of each target. Therefore, internal constraints 

check logic is required for GA, because conventional 

crossover and mutation cannot reflect these conditions. In 

this study, additional operators were incorporated into the 

study as the timing constraints. The operation time of the 

i-th task (i∈NNTNk) can be bounded as the upper bound and 

lower bound as

(17)

where ti, LB is the lower bound of the i-th task, and ti, UB is 

the upper bound of the i-th task. Note that ti, UB and ti, UB are 

decreased with time.

Subsequently, modified mutation operators, which 

comprise the forward mutation and the backward mutation, 

are composed with respect to the constraints, as shown in 

Figs. 12 and 13. The forward mutation is related to the upper 

bound. If the operation time exceeds the upper bound, the 

task is shifted forward. Similarly, if the operation time is less 

than the lower bound, then the task is shifted backward. 

Each UAV should have the upper bound and the lower bound 
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where ,i LBt  is the lower bound of the -thi  task, and ,i UBt  

is the upper bound of the -thi  task. Note that ,i LBt  and 

,i UBt  are decreased with time. 
Subsequently, modified mutation operators, which 

comprise the forward mutation and the backward 
mutation, are composed with respect to the constraints, 
as shown in Figs. 12 and 13. The forward mutation is 
related to the upper bound. If the operation time exceeds 
the upper bound, the task is shifted forward. Similarly, if 
the operation time is less than the lower bound, then the 
task is shifted backward. Each UAV should have the 

upper bound and the lower bound information of each 
task. Initial upper bound values are set as infinity, and 
the initial lower bound values are set as zero. For the 
timing constraint operators, the timetables for the 
solution set are required. 

Figure 14 shows the algorithm of the timing 
constraints operators. iτ  is the timetable value of the 
-thi  task. 

 

 
All of the additional constraints are dealt with in the 

GA loop, and therefore a non-conflicting solution can be 
obtained. At the negotiation stage, each UAV requires 
the time bound information of other UAVs, and the 
additional information about the bounds is required for 
communication. 

 
 

4. Numerical Simulations 
 

4.1 Simulation conditions 
 

Procedure Main( ) 
C  = Initialize the feasible solution set 
f  = Fitness( C ) 
while(operation) 

Receive the result of GA 
Receive the result of Path Planning  
Guidance and Control 
if ( ,j kT  is done) 

Transfer ,j kT  from the set C to the terminated 
tasks 

if (communication =1) 
Receive the result of Negotiation 
Modify the solution set 
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information of each task. Initial upper bound values are set 

as infinity, and the initial lower bound values are set as zero. 

For the timing constraint operators, the timetables for the 

solution set are required.

Figure 14 shows the algorithm of the timing constraints 

operators. τi is the timetable value of the i-th task.

All of the additional constraints are dealt with in the 

GA loop, and therefore a non-conflicting solution can 

be obtained. At the negotiation stage, each UAV requires 

the time bound information of other UAVs, and the 

additional information about the bounds is required for 

communication.

4. Numerical Simulations

4.1 Simulation conditions

Numerical simulations were performed for the multiple 

UAVs, multiple tasks which consist of multiple targets and 

their sub-tasks. Table 1 summarizes the conditions of the 

numerical simulations. Standard setting includes 3 UAVs, 6 

known targets, and 2 sub-tasks for each target, and therefore 

the UAV group should perform 12 tasks under the timing 

constraints. Case 1 is the centralized task assignment case 

using MILP (Schumacher et al., 2004), which provided a 

solution for comparison to the other cases. Cases 2-6 are 

the decentralized task assignment cases using GA and 

the negotiation process, which were evaluated for on-line 

applications. The simulations were performed on a desktop 

computer which has a dual-core 2.53 GHz CPU and 2 GB 

RAM, and MATLAB software. The process time for each 

function was tuned by adjusting the number of generations 

in the GA. The process times of the GA, communication, and 

path planning were 0.03, 0.05, and 0.1 seconds, respectively. 

The probability of the mutation was set to 0.8, and the 

number of the solution candidates was set to 10 in the GA. 

The number of generations per each step was set to 15.

Unknown targets were included in simulations 

concerning the dynamic environment. If a UAV approached 

the unknown targets, the UAV detected the unknown targets, 

and the information will be updated. The sensing range was 

set to 800 meters. Additional timing constraints were set to 

the deadlines of the specified targets independent of the task 

order of each target.
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Case 1 is the centralized task assignment case. The result of 
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Table 1. Conditions of the numerical simulations

Case 1 (MILP) Case 2 (GA) Case 3 (GA) Case 4 (GA) Case 5 (GA) Case 6 (GA)
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(homogeneous,
V = 25 m/s,
Rmin = 100 m)
6 known targets
2 tasks per target
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6 known targets
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Rmin = 100 m)
6 known targets
3 unknown targets
(sensing range 800 m)
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2 tasks per target
Additional timing 
constraints
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(heterogeneous,
V = {25, 15, 35 } m/s,
Rmin = {75, 50, 100} m)
6 known targets
3 unknown targets
(sensing range 800 m)
2 tasks per target
Additional timing 
constraints
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(homogeneous,
V = 25 m/s,
Rmin = 100 m)
6 known targets
3 unknown targets
(sensing range 800 m)
2 tasks per target
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limit 500 m

MILP: mixed integer linear programming, GA: genetic algorithm, UAV: unmanned aerial vehicle.
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Table 5. Result of Case 4–tasks with time 
(Target, Task) (3,2)-(5,1)-(9,1)-(4,1)-(9,2)-(4,2) UAV 1

Time (s) 38.6-66.6-101.8-117-141.2-
163.2 

(Target, Task) (3,1)-(1,1)-(8,1)-(2,1)-(6,1)-(6,2) UAV 2
Time (s) 23.4-49.8-71.6-96.6-129.4-154.6

(Target, Task) (7,1)-(7,2)-(5,2)-(1,2)-(8,2)-(2,2) UAV 3
Time (s) 24.2-49.4-70.2-119.6-141.6-

166.6 
UAV: unmanned aerial vehicle. 
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Fig. 22. Case 4 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets and additional timing constraints conditions 
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Fig. 21. Case 3 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets condition. 
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Fig. 20. Mean cost variation of Monte Carlo runs (n = 100). 
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Fig. 19. Cost of each unmanned aerial vehicle and total 
cost with respect to the time–Case 2. 
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Fig. 18. Case 2 results–the decentralized task assignment 
using genetic algorithm and the negotiation. 

Fig. 18. �Case 2 results–the decentralized task assignment using ge-
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Fig. 20. Mean cost variation of Monte Carlo runs (n = 100). 
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Fig. 18. Case 2 results–the decentralized task assignment 
using genetic algorithm and the negotiation. 
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denote the unknown targets. During the early stages, 
each UAV does not know the unknown targets. When 
the UAV approached the unknown targets, it detected 
the unknown objects and updated the targets 
information. 

Case 4 is the case with the timing constraints. The 
results are shown in Fig. 22. The task order of the same 
target can be locally adjusted for each UAV. However, if 
the UAVs exchanged tasks with each other, the task 
order may become disorganized. Modified mutation was 
used in order to prevent disorganization. In this case, 
additional constraints, such as the internal task order, 
were configured. For target 1, sub-task 1 was set to 
execute between 30 seconds and 100 seconds, and sub-
task 2 was set to execute after 100 seconds. Table 5 
shows that the constraints were satisfied. 

Case 5 involves heterogeneous UAVs. UAV 1 
velocity was assumed to be 25 m/s, UAV 2 was 15 m/s, 
and UAV 3 was 35 m/s. The turn radius of UAV 1 was 
75 m, UAV 2 was 50 m, and UAV 3 was 100 m. The 
additional timing constraint was set to the same value as 
that in Case 3. Because of the different velocities and 
turn radii, the flight time of each UAV was also different. 
Each UAV adjusted the timing constraints as shown in 
Fig. 23 and Table 6. 

Case 6 involved the simulation with respect to the 
communication range limit. The limit was set to 500 m. 
In Case 6, repeated tasks were experienced, as shown in 
Table 7. Figure 24 shows that known tasks were 
distributed in the early stages, but unknown tasks were 
not distributed. As UAVs performed the mission, each 
UAV recognized new tasks or received synchronized 
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In Fig. 24, the small dotted points denote the position 
at which the UAVs identified a new target, and the 
dotted lines denote the communication connection. 
Therefore, information of target 7 was updated when 
UAV3 moved to target 1, which was located nearby 
target 7 (t = 26 s). Information from target 7 was 
transferred to UAV 1 and UAV 2. Therefore UAV 1 
performed the tasks of the new target as target 8, which 
was located at the top left-hand side. UAV 1 located 
target 8 when it moved from target 3 to target 5 (t = 31 
s), the sensing point was located on a slightly upward 
location from the target 3, and therefore UAV 1 
promptly changed its task order to perform the tasks of 
target 8. While UAV 1 performed the tasks of target 8, 
UAV 2 moved to the new target and performed the new 
target as target 9 (t = 65 s). During that time, 
communication of UAV 1 and UAV 2 was disconnected.  
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Fig. 16. Costs and process times with respect to the 
number of target contains 1 sub-task

Table 2. Result of Case 1–tasks with time 
(Target, Task) (1,1)-(2,1)-(6,1)-(4,2) UAV 1
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(Target, Task) (3,1)-(5,1)-(5,2)-(4,1)-(6,2) UAV 2
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Time (s) 26.4-49-85.8 
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denote the unknown targets. During the early stages, 
each UAV does not know the unknown targets. When 
the UAV approached the unknown targets, it detected 
the unknown objects and updated the targets 
information. 

Case 4 is the case with the timing constraints. The 
results are shown in Fig. 22. The task order of the same 
target can be locally adjusted for each UAV. However, if 
the UAVs exchanged tasks with each other, the task 
order may become disorganized. Modified mutation was 
used in order to prevent disorganization. In this case, 
additional constraints, such as the internal task order, 
were configured. For target 1, sub-task 1 was set to 
execute between 30 seconds and 100 seconds, and sub-
task 2 was set to execute after 100 seconds. Table 5 
shows that the constraints were satisfied. 

Case 5 involves heterogeneous UAVs. UAV 1 
velocity was assumed to be 25 m/s, UAV 2 was 15 m/s, 
and UAV 3 was 35 m/s. The turn radius of UAV 1 was 
75 m, UAV 2 was 50 m, and UAV 3 was 100 m. The 
additional timing constraint was set to the same value as 
that in Case 3. Because of the different velocities and 
turn radii, the flight time of each UAV was also different. 
Each UAV adjusted the timing constraints as shown in 
Fig. 23 and Table 6. 

Case 6 involved the simulation with respect to the 
communication range limit. The limit was set to 500 m. 
In Case 6, repeated tasks were experienced, as shown in 
Table 7. Figure 24 shows that known tasks were 
distributed in the early stages, but unknown tasks were 
not distributed. As UAVs performed the mission, each 
UAV recognized new tasks or received synchronized 
information from the other UAVs. 

In Fig. 24, the small dotted points denote the position 
at which the UAVs identified a new target, and the 
dotted lines denote the communication connection. 
Therefore, information of target 7 was updated when 
UAV3 moved to target 1, which was located nearby 
target 7 (t = 26 s). Information from target 7 was 
transferred to UAV 1 and UAV 2. Therefore UAV 1 
performed the tasks of the new target as target 8, which 
was located at the top left-hand side. UAV 1 located 
target 8 when it moved from target 3 to target 5 (t = 31 
s), the sensing point was located on a slightly upward 
location from the target 3, and therefore UAV 1 
promptly changed its task order to perform the tasks of 
target 8. While UAV 1 performed the tasks of target 8, 
UAV 2 moved to the new target and performed the new 
target as target 9 (t = 65 s). During that time, 
communication of UAV 1 and UAV 2 was disconnected.  
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each UAV does not know the unknown targets. When 
the UAV approached the unknown targets, it detected 
the unknown objects and updated the targets 
information. 

Case 4 is the case with the timing constraints. The 
results are shown in Fig. 22. The task order of the same 
target can be locally adjusted for each UAV. However, if 
the UAVs exchanged tasks with each other, the task 
order may become disorganized. Modified mutation was 
used in order to prevent disorganization. In this case, 
additional constraints, such as the internal task order, 
were configured. For target 1, sub-task 1 was set to 
execute between 30 seconds and 100 seconds, and sub-
task 2 was set to execute after 100 seconds. Table 5 
shows that the constraints were satisfied. 

Case 5 involves heterogeneous UAVs. UAV 1 
velocity was assumed to be 25 m/s, UAV 2 was 15 m/s, 
and UAV 3 was 35 m/s. The turn radius of UAV 1 was 
75 m, UAV 2 was 50 m, and UAV 3 was 100 m. The 
additional timing constraint was set to the same value as 
that in Case 3. Because of the different velocities and 
turn radii, the flight time of each UAV was also different. 
Each UAV adjusted the timing constraints as shown in 
Fig. 23 and Table 6. 

Case 6 involved the simulation with respect to the 
communication range limit. The limit was set to 500 m. 
In Case 6, repeated tasks were experienced, as shown in 
Table 7. Figure 24 shows that known tasks were 
distributed in the early stages, but unknown tasks were 
not distributed. As UAVs performed the mission, each 
UAV recognized new tasks or received synchronized 
information from the other UAVs. 

In Fig. 24, the small dotted points denote the position 
at which the UAVs identified a new target, and the 
dotted lines denote the communication connection. 
Therefore, information of target 7 was updated when 
UAV3 moved to target 1, which was located nearby 
target 7 (t = 26 s). Information from target 7 was 
transferred to UAV 1 and UAV 2. Therefore UAV 1 
performed the tasks of the new target as target 8, which 
was located at the top left-hand side. UAV 1 located 
target 8 when it moved from target 3 to target 5 (t = 31 
s), the sensing point was located on a slightly upward 
location from the target 3, and therefore UAV 1 
promptly changed its task order to perform the tasks of 
target 8. While UAV 1 performed the tasks of target 8, 
UAV 2 moved to the new target and performed the new 
target as target 9 (t = 65 s). During that time, 
communication of UAV 1 and UAV 2 was disconnected.  
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Table 2. Result of Case 1–tasks with time 
(Target, Task) (1,1)-(2,1)-(6,1)-(4,2) UAV 1

Time (s) 27.2-62.8-99-120 
(Target, Task) (3,1)-(5,1)-(5,2)-(4,1)-(6,2) UAV 2

Time (s) 23.2-51.6-77-118-140 
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the assignment is shown in Fig. 15. This result is the optimal 

assignment solution under linear cost approximation. Table 

2 summarizes the assignment results with respect to the 

time.

Timing constraints cause difficulties during problem 

solving. Figure 16 shows the cost and process time results of 

the centralized task assignment using MILP and GA when 

each target had one sub-task. In this figure, the process 

times of MILP and GA are relatively short. Figure 17 is the 

case of two sub-tasks for each target. In this case, the timing 

constraints were required, and the constraints sizes were 

expanded. As shown in Fig. 17, the process time of MILP 

remarkably increased.

4.3 The decentralized task assignment

Cases 2-6 are the decentralized task assignment cases using 

GA and communication. Figure 18 shows the result of the 

decentralized task assignment of Case 2 and it is summarized 

in Table 3. Figure 19 shows the cost variation with respect to 

the time. The costs between UAVs were balanced during the 

early stages. Figure 20 shows the results obtained from the 

Monte Carlo simulation. The task assignment simulations 

were performed 100 times, and the mean cost and standard 

deviation with respect to the iteration numbers were plotted. 

Achieving a converging solution is difficult. However, the 

total cost approached the minimum cost.

Figure 21 shows Case 3 results, and the assigned tasks with 

respect to time are summarized in Table 4. This case includes 

the dynamic environments. In this Case, 3 unknown targets 

were incorporated into the dynamic environment. In the Fig. 

21, the triangles denote the unknown targets. During the 

early stages, each UAV does not know the unknown targets. 

When the UAV approached the unknown targets, it detected 

the unknown objects and updated the targets information.

Case 4 is the case with the timing constraints. The results 

are shown in Fig. 22. The task order of the same target can 

be locally adjusted for each UAV. However, if the UAVs 

exchanged tasks with each other, the task order may become 

disorganized. Modified mutation was used in order to 

prevent disorganization. In this case, additional constraints, 

such as the internal task order, were configured. For target 

1, sub-task 1 was set to execute between 30 seconds and 100 

seconds, and sub-task 2 was set to execute after 100 seconds. 

Table 5 shows that the constraints were satisfied.

Case 5 involves heterogeneous UAVs. UAV 1 velocity was 

assumed to be 25 m/s, UAV 2 was 15 m/s, and UAV 3 was 35 

m/s. The turn radius of UAV 1 was 75 m, UAV 2 was 50 m, and 

UAV 3 was 100 m. The additional timing constraint was set 

to the same value as that in Case 3. Because of the different 

velocities and turn radii, the flight time of each UAV was also 
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Table 5. Result of Case 4–tasks with time 
(Target, Task) (3,2)-(5,1)-(9,1)-(4,1)-(9,2)-(4,2) UAV 1

Time (s) 38.6-66.6-101.8-117-141.2-
163.2 

(Target, Task) (3,1)-(1,1)-(8,1)-(2,1)-(6,1)-(6,2) UAV 2
Time (s) 23.4-49.8-71.6-96.6-129.4-154.6

(Target, Task) (7,1)-(7,2)-(5,2)-(1,2)-(8,2)-(2,2) UAV 3
Time (s) 24.2-49.4-70.2-119.6-141.6-

166.6 
UAV: unmanned aerial vehicle. 
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Fig. 22. Case 4 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets and additional timing constraints conditions 

Table 4. Result of Case 3–tasks with time 
(Target, Task) (1,1)-(8,1)-(8,2)-(2,1)-(6,1) UAV 1

Time (s) 27.2-50.6-75.6-101-133.8 
(Target, Task) (3,1)-(5,1)-(9,1)-(4,1)-(9,2)-(4,2)-

(6,2) 
UAV 2

Time (s) 23.6-51.6-87.2-102.4-126.6-
148.8-169.6 

(Target, Task) (7,1)-(7,2)-(5,2)-(3,2)-(1,2)- (2,2)UAV 3
Time (s) 24.2-49.4-69.8-99.8-122.4-158.8

UAV: unmanned aerial vehicle. 

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

 

 

Target1

Target2

Target3

Targer4

Targer5

Targer6

Targer7

Targer8

Targer9

UAV1

UAV2

UAV3 Goal1

Goal2

Goal3

UAV1
UAV2
UAV3

 
Fig. 21. Case 3 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets condition. 
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Fig. 20. Mean cost variation of Monte Carlo runs (n = 100). 

Table 3. Result of Case 2–tasks with time 
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Fig. 19. Cost of each unmanned aerial vehicle and total 
cost with respect to the time–Case 2. 
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Fig. 18. Case 2 results–the decentralized task assignment 
using genetic algorithm and the negotiation. 

Fig. 21. �Case 3 results–the decentralized task assignment using ge-
netic algorithm and the negotiation with new targets condi-
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Fig. 22. Case 4 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets and additional timing constraints conditions 
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Fig. 20. Mean cost variation of Monte Carlo runs (n = 100). 
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Fig. 19. Cost of each unmanned aerial vehicle and total 
cost with respect to the time–Case 2. 
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Fig. 18. Case 2 results–the decentralized task assignment 
using genetic algorithm and the negotiation. 

Fig. 22. �Case 4 results–the decentralized task assignment using ge-
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Table 4. Result of Case 3–tasks with time

UAV 1
(Target, Task) (1,1)-(8,1)-(8,2)-(2,1)-(6,1)

Time (s) 27.2-50.6-75.6-101-133.8

UAV 2

(Target, Task) (3,1)-(5,1)-(9,1)-(4,1)-(9,2)-(4,2)-(6,2)

Time (s) 23.6-51.6-87.2-102.4-126.6-148.8-
169.6

UAV 3
(Target, Task) (7,1)-(7,2)-(5,2)-(3,2)-(1,2)- (2,2)

Time (s) 24.2-49.4-69.8-99.8-122.4-158.8

UAV: unmanned aerial vehicle.

Table 5. Result of Case 4–tasks with time

UAV 1 (Target, Task) (3,2)-(5,1)-(9,1)-(4,1)-(9,2)-(4,2)

Time (s) 38.6-66.6-101.8-117-141.2-163.2

UAV 2 (Target, Task) (3,1)-(1,1)-(8,1)-(2,1)-(6,1)-(6,2)

Time (s) 23.4-49.8-71.6-96.6-129.4-154.6

UAV 3 (Target, Task) (7,1)-(7,2)-(5,2)-(1,2)-(8,2)-(2,2)

Time (s) 24.2-49.4-70.2-119.6-141.6-166.6

UAV: unmanned aerial vehicle.
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different. Each UAV adjusted the timing constraints as shown 

in Fig. 23 and Table 6.

Case 6 involved the simulation with respect to the 

communication range limit. The limit was set to 500 m. In 

Case 6, repeated tasks were experienced, as shown in Table 

7. Figure 24 shows that known tasks were distributed in the 

early stages, but unknown tasks were not distributed. As 

UAVs performed the mission, each UAV recognized new 

tasks or received synchronized information from the other 

UAVs.

In Fig. 24, the small dotted points denote the position 

at which the UAVs identified a new target, and the dotted 

lines denote the communication connection. Therefore, 

information of target 7 was updated when UAV3 moved 

to target 1, which was located nearby target 7 (t = 26 s). 

Information from target 7 was transferred to UAV 1 and UAV 

2. Therefore UAV 1 performed the tasks of the new target as 

target 8, which was located at the top left-hand side. UAV 1 

located target 8 when it moved from target 3 to target 5 (t 

= 31 s), the sensing point was located on a slightly upward 

location from the target 3, and therefore UAV 1 promptly 

changed its task order to perform the tasks of target 8. While 

UAV 1 performed the tasks of target 8, UAV 2 moved to the 

new target and performed the new target as target 9 (t = 65 

s). During that time, communication of UAV 1 and UAV 2 was 

disconnected. 

Therefore, UAV 1 performed the tasks provided by 

target 9, and treated it as a new target (t = 153.6 s). This 

phenomenon is natural under the limited communication 

range condition, and it can be resolved by adopting the large 

range communication equipments.

Table 8 summarizes the cost and process time of each 

case. Case 1 is the off-line assignment case, whereas Cases 

2-6 were on-line assignment cases considering the process 

time and the communications. In comparison to Case 1, 
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Fig. 24. Case 6 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets, additional timing constraints, and communication 
limit conditions. 
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Fig. 23. Case 5 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets, additional timing constraints, and heterogeneous 
unmanned aerial vehicles conditions. Table 8. Cost and process time of each case 
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UAV: unmanned aerial vehicle. 

Fig. 23. �Case 5 results–the decentralized task assignment us-
ing genetic algorithm and the negotiation with new tar-
gets, additional timing constraints, and heterogeneous 
unmanned aerial vehicles conditions.
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Fig. 24. Case 6 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets, additional timing constraints, and communication 
limit conditions. 
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Fig. 23. Case 5 results–the decentralized task assignment 
using genetic algorithm and the negotiation with new 
targets, additional timing constraints, and heterogeneous 
unmanned aerial vehicles conditions. Table 8. Cost and process time of each case 
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Case 2 incurred more costs in order to perform the tasks. 

However, the process time obtaining the solution was shorter 

than that of Case 1. Because of the timing constraints, the 

process time of MILP method increased. Therefore, GA was 

suitable to the sequential process. Moreover, the assignment 

result can be improved with respect to the time. Cases 3-6 

considered the additional conditions such as unknown 

targets, additional timing constraints, heterogeneous model, 

and communication range limit. As shown in the figures and 

tables, task assignments were properly performed to the 

given conditions. Though the cost increased according to the 

conditions, the process time did not change.

5. Conclusions

In this study, a decentralized task assignment algorithm 

was evaluated as a means for implementing autonomous 

multiple UAV operations. The results are described as 

follows.

First, a modified algorithm for applying on-line task 

assignments to multiple UAVs was proposed. The multiple 

targets containing multiple tasks scenarios were dealt 

with for the problem. The considered scenarios have more 

computational complexity rather than the single waypoint 

assignment scenario. A genetic algorithm was adopted 

in order to facilitate problem solving. It is implemented 

sequentially by adjusting the recursion steps for the on-line 

application.

Second, the fully decentralized task assignment process 

was suggested. For the decentralization, the following 

assumptions were made: a base station did not exist, and 

each had autonomous function for the mission planning. 

The problem size can be reduced by the decentralization 

compared with the centralized task assignment.

Third, the communication and task distribution strategy 

were dealt with for the dynamic environments and the 

communication limit. Each UAV only distributed its own tasks 

through communication, and each UAV performed tasks 

according to the specified strategy. The proposed method 

provided non-conflicting assignments communication was 

limited and new target information was available.

Although the solution is not optimal, it still serves 

as a feasible solution guaranteeing good performance. 

The simulation results validate the proposed approach. 

The proposed method is appropriate for moderate sized 

problems. However, process time increases are inevitable as 

the problem size increases. In this case, hard constraints, such 

as the fully decentralized process and the communication 

limit, must be relieved. In other words, if the problem size 

increases, partially decentralized process having the base 

station and guaranteeing the communication ranges are 

required.
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