• 제목/요약/키워드: Genetic Parameter

검색결과 643건 처리시간 0.026초

역복사경계해석을 위한 다양한 조정법 비교 (Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis)

  • 김기완;신병선;길정기;여권구;백승욱
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.903-910
    • /
    • 2005
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and finite-difference Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach that adopts the hybrid genetic algorithm as an initial value selector and uses the finite-difference Newton method as an optimization procedure.

유전 알고리즘에 의한 브러시리스 DC모터의 속도 제어용 혼합 $H_2/H_{\infty}$ PID제어기 설계 (Design of a Mixed $H_2/H_{\infty}$ PID Controller for Speed Control of Brushless DC Motor by Genetic Algorithm)

  • ;;김학경;김상봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.77-78
    • /
    • 2006
  • A mixed method between $H_2\;and\;H_{\infty}$ control are widely applied to systems which has parameter perturbation and uncertain model to obtain an optimal robust controller. Brushless Direct Current (BLDC) motors are widely used for high performance control applications. Conventional PID controller only provides satisfactory performance for set-point regulation. However, with the presence of nonlinearities, uncertainties and perturbations in the system, conventional PID is not sufficient to achieve an optimal robust controller. This paper presents an approach to ease designing a Mixed $H_2/H_{\infty}$ PID controller for controlling speed of Brushless DC motors and the genetic algorithm is used to solve the optimized problems. Numerical results are shown to prove that the performance in the proposed controller is better than that in the optimal PID controller using LQR approach.

  • PDF

유전자 알고리즘을 이용한 접지면 U 슬롯 구조의 광대역 소형 마이크로스트립 안테나 설계 (Design of Broadband Compact Microstrip Antenna with U slotted Ground Plane Using Genetic Algorithm)

  • 임현준;윤현보
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.432-436
    • /
    • 2003
  • This paper presents a broadband microstrip antenna design with four U slots on the ground plane by using of genetic algorithm. FDTD method is used as fitness function for antenna analysis, and length of rectangular patch, length of ground plane slot, distance from center point to feed point is used as optimization parameter for maximum bandwidth and minimum size. The measurement result of implemented antenna present bandwidth of 15.63 % and peak gain of 3.61 dBi in the 2.445 GHz, and antenna has a reduced patch size of 54.8 % compare with normal microstrip antenna.

  • PDF

전파 잡음 데이터베이스 구축을 위한 프로그램 개발 (Development of a Program for Constructing Electromagnetic Noise Database)

  • 육재림;허문만;윤현보
    • 한국전자파학회논문지
    • /
    • 제15권9호
    • /
    • pp.856-862
    • /
    • 2004
  • 유전자 알고리즘을 사용하여 전파 잡음의 통계적 모형(APD: amplitude probability distribution)으로부터 최적파라미터를 추출, 데이터베이스화하는 프로그램을 개발하였다. 제안된 파라미터 추출 방법은 기존의 시행 착오법과 비교하여 추출 시간이 단축되고 추출과정의 자동화가 가능하며 각 파라미터별로 국부적 최적화가 아닌 전역적 최적화를 시행할 수 있다는 장점을 가지고 있다.

유전 알고리즘을 이용한 다중 양자 우물 구조의 갈륨비소 광수신소자 공정변수의 최적화 (Optimization of Device Process Parameters for GaAs-AlGaAs Multiple Quantum Well Avalanche Photodiodes Using Genetic Algorithms)

  • 김의승;오창훈;이서구;이봉용;이상렬;명재민;윤일구
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.241-245
    • /
    • 2001
  • In this paper, we present parameter optimization technique for GaAs/AlGaAs multiple quantum well avalanche photodiodes used for image capture mechanism in high-definition system. Even under flawless environment in semiconductor manufacturing process, random variation in process parameters can bring the fluctuation to device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. The precise modeling for this variation is thus required for accurate prediction of device performance. This paper will first use experimental design and neural networks to model the nonlinear relationship between device process parameters and device performance parameters. The derived model was then put into genetic algorithms to acquire optimized device process parameters. From the optimized technique, we can predict device performance before high-volume manufacturign, and also increase production efficiency.

  • PDF

유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구 (A Study for Structural Damage Identification Method Using Genetic Algorithm)

  • 우호길;최병민
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

A Genetic Approach for Joint Link Scheduling and Power Control in SIC-enable Wireless Networks

  • Wang, Xiaodong;Shen, Hu;Lv, Shaohe;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1679-1691
    • /
    • 2016
  • Successive interference cancellation (SIC) is an effective means of multi-packet reception to combat interference at the physical layer. We investigate the joint optimization issue of channel access and power control for capacity maximization in SIC-enabled wireless networks. We propose a new interference model to characterize the sequential detection nature of SIC. Afterward, we formulize the joint optimization problem, prove it to be a nondeterministic polynomial-time-hard problem, and propose a novel approximation approach based on the genetic algorithm (GA). Finally, we discuss the design and parameter setting of the GA approach and validate its performance through extensive simulations.

Automatic Fuzzy Rule Generation Utilizing Genetic Algorithms

  • Hee, Soo-Hwang;Kwang, Bang-Woo
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.40-49
    • /
    • 1992
  • In this paper, an approach to identify fuzzy rules is proposed. The decision of the optimal number of fuzzy rule is made by means of fuzzy c-means clustering. The identification of the parameters of fuzzy implications is carried out by use of genetic algorithms. For the efficinet and fast parameter identification, the reduction thechnique of search areas of genetica algorithms is proposed. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of Gas Furnace. Despite the simplicity of the propsed apprach the accuracy of the identified fuzzy model of gas furnace is superior as compared with that of other fuzzy modles.

  • PDF

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit;Saini, Sonak;Kaur, Gurpreet;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.118-123
    • /
    • 2014
  • For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

구조최적화를 위한 분산 복합 유전알고리즘 (Distributed Hybrid Genetic Algorithms for Structural Optimization)

  • 우병헌;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.203-210
    • /
    • 2002
  • The great advantages on the Genetic Algorithms(GAs) are ease of implementation, and robustness in solving a wide variety of problems, several GAs based optimization models for solving complex structural problems were proposed. However, there are two major disadvantages in GAs. The first disadvantage, implementation of GAs-based optimization is computationally too expensive for practical use in the field of structural optimization, particularly for large-scale problems. The second problem is too difficult to find proper parameter for particular problem. Therefore, in this paper, a Distributed Hybrid Genetic Algorithms(DHGAs) is developed for structural optimization on a cluster of personal computers. The algorithm is applied to the minimum weight design of steel structures.

  • PDF