• Title/Summary/Keyword: Genetic Parameter

Search Result 640, Processing Time 0.033 seconds

Nonlinear IIR filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 비선형 IIR 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.15-17
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of nonlinear IIR filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate nonlinear IIR filter parameter using the genetic algorithm.

  • PDF

FIR filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 FIR 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.502-504
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of FIR filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate FIR filter parameter using the genetic algorithm.

  • PDF

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem

  • Sun, Ji Ung
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • The most difficult and time-intensive issue in the successful implementation of genetic algorithms is to find good parameter setting, one of the most popular subjects of current research in genetic algorithms. In this study, we present a new efficient experimental design method for parameter optimization in a genetic algorithm for general job shop scheduling problem using the Taguchi method. Four genetic parameters including the population size, the crossover rate, the mutation rate, and the stopping condition are treated as design factors. For the performance characteristic, makespan is adopted. The number of jobs, the number of operations required to be processed in each job, and the number of machines are considered as noise factors in generating various job shop environments. A robust design experiment with inner and outer orthogonal arrays is conducted by computer simulation, and the optimal parameter setting is presented which consists of a combination of the level of each design factor. The validity of the optimal parameter setting is investigated by comparing its SN ratios with those obtained by an experiment with full factorial designs.

Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System (신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.

Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm (전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별)

  • 곽동훈;이춘태;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm (개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

Butter-Worth analog filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 Butter-Worth 아날로그 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, So-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2513-2515
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for leaming in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of Butter-Worth analog filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate Butter-Worth analog filter parameter using the genetic algorithm.

  • PDF

Parameter Estimation of Three-Phase Induction Motor by Using Genetic Algorithm

  • Jangjit, Seesak;Laohachai, Panthep
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.360-364
    • /
    • 2009
  • This paper suggests the techniques in determining the values of the steady-state equivalent circuit parameters of a three-phase induction machine using genetic algorithm. The parameter estimation procedure is based on the steady-state phase current versus slip and input power versus slip characteristics. The propose estimation algorithm is of non-linear kind based on selection in genetic algorithm. The machine parameters are obtained as the solution of a minimization of objective function by genetic algorithm. Simulation shows good performance of the propose procedures.

A Structural Learning of MLP Classifiers Using PfSGA (PfSGA를 이용한 MLP 분류기의 구조 학습)

  • 愼晟孝;金 商雲
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1277-1280
    • /
    • 1998
  • We propose a structural learning method of MLP classifiers for a given application using PfSGA (parameter-free species genetic algorithm), which is a combining of species genetic algorithm(SGA) and parameter-free genetic algorithm(PfGA). experimental results show that PfSGA can reduce the learing time of SGA and has no influence of parameter values on structural learning. And we also convince that PfSGA is more efficient than the other methods in the aspect of misclassification ratio, learning rate, and complexity of MLP structure.

  • PDF

On-line parameter estimation of continuous-time systems using a genetic algorithm (유전알고리즘을 이용한 연속시스템의 온라인 퍼래미터 추정)

  • Lee, Hyeon-Sik;Jin, Gang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.76-81
    • /
    • 1998
  • This paper presents an on-line scheme for parameter estimation of continuous-time systems, based on the model adjustment technique and the genetic algorithm technique. To deal with the initialisation and unmeasurable signal problems in on-line parameter estimation of continuous-time systems, a discrete-time model is obtained for the linear differential equation model and approximations of unmeasurable states with the observable output and its time-delayed values are obtained for the nonlinear state space model. Noisy observations may affect these approximation processes and degrade the estimation performance. A digital prefilter is therefore incorporated to avoid direct approximations of system derivatives from possible noisy observations. The parameters of both the model and the designed filter are adjusted on-line by a genetic algorithm, A set of simulation works for linear and nonlinear systems is carried out to demonstrate the effectiveness of the proposed method.

  • PDF