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Abstract. The most difficult and time-intensive issue in the successful implementation of genetic algorithms is 
to find good parameter setting, one of the most popular subjects of current research in genetic algorithms. In this 
study, we present a new efficient experimental design method for parameter optimization in a genetic algorithm 
for general job shop scheduling problem using the Taguchi method. Four genetic parameters including the 
population size, the crossover rate, the mutation rate, and the stopping condition are treated as design factors. For 
the performance characteristic, makespan is adopted. The number of jobs, the number of operations required to 
be processed in each job, and the number of machines are considered as noise factors in generating various job 
shop environments. A robust design experiment with inner and outer orthogonal arrays is conducted by computer 
simulation, and the optimal parameter setting is presented which consists of a combination of the level of each 
design factor. The validity of the optimal parameter setting is investigated by comparing its SN ratios with those 
obtained by an experiment with full factorial designs. 
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1.  INTRODUCTION 

Recently, the application of heuristic search method 
for combinatorial optimization problems has attracted 
much attention. Since Holland (1975) developed the 
basics of genetic algorithm (GA), it has been proven to 
be efficient for many complicated problems. The most 
difficult and time-intensive issue in the successful im-
plementation of GA is to find good parameter setting, 
one of the most popular subjects of current research in 
GA. Recently, a number of approaches have been sug-
gested to derive robust parameter settings for GA. In 
one of the most extensive studies for determining the 
optimal parameter values, Schaffer et al. (1989) conclu-
ded that the optimal parameter settings vary from prob-
lem to problem. Pakath and Zaveri (1993) proposed a 
decision support system to determine the appropriate 
parameter values systematically for a given problem. 
Gupta et al. (1993) discussed an experimental design ap-
proach using full factorial design to evaluate parameter 
settings. Hsieh et al. (2000) used the Taguchi method to 
find the optimal operating parameters in the GA such 

that the efficiency of the GA can be improved. More 
recently, nevertheless, attention has been shifted toward 
the processes of forming new trial chromosomes at each 
interation in the GA such that the efficiency of the GA 
can be further improved, as was done in the works of 
Leung and Wang (2001) and Liu et al. (2006). More speci-
fically, for instance, can one use the abilities of the Ta-
guchi method to seek the optimal breeding to efficiently 
generate optimal offspring in establishing an algorithm 
of even higher performance. 

In this study, we present a new efficient experimen-
tal design method for parameter optimization in a GA 
for general job shop scheduling problem (GJSP) using 
Taguchi method. Robust designs such as Taguchi method 
borrow many ideas from the statistical design of expe-
riments for evaluating and implementing improvements 
in products, processes, or equipment. Its fundamental 
principle, largely speaking, is to improve the quality of 
characteristic of interest by minimizing the effect of the 
causes of variation, but not eliminating those causes 
themselves. To do so, four most commonly studied GA 
parameters including the population size, the crossover 
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rate, the mutation rate, and the stopping condition that 
implies the number of iterations which an improvement 
is not occurred consecutively are treated as design fac-
tors. For the performance characteristic, makespan is 
adopted. The number of jobs, the number of operations  

required to be processed in each job, and the num-
ber of machines are considered as noise factors in gen-
erating various job shop environments. An experimental 
design is constructed using inner and outer orthogonal 
arrays for the design and noise factors, respectively. At 
each combination of design and noise factors, the per-
formance characteristic is obtainded, and the so called 
signal-to-noise (SN) ratio is calculated at each design 
condition as a robust measure. These SN ratios are ana-
lyzed by analysis of variance technique to determine 
optimal settings of design factors that are robust to noise 
factors. The validity of the optimal parameter settings is 
investigated by comparing its SN ratios with those ob-
tained by an experiment with full factorial designs. 

This paper is organized as follows. Taguchi’s philo-
sophy for performance improvement is reviewed in sec-
tion 2. In section 3, the job shop scheduling problem is 
described and experimental factors chosen for this study 
are presented. The design of an orthogonal array ex-
periment and the analysis of the experimental data are 
presented in section 4. And conclusions are found in 
section 5. 

2.  TAGUCHI METHOD 

In this section, we present the basic concept of the 
Taguchi method. Performance of a production process, 
as measured by some performance characteristics, vary 
due to a variety of causes. We call all such causes noise 
factors. The fundamental principle of robust design (or 
parameter design) proposed by Taguchi is to determine 
settings of design factors such that the effects of noise 
factors on the performance characteristics are minimized 
(Phadke 1989). For this purpose, Taguchi suggests an 
experimental approach in which orthogonal arrays are 
used to determine a large number of design factors with 
a small number of experimental runs. He also proposed 
to capture the effects of noise factors on a performance 
characteristic by the SN ratio. 

2.1  Overview and Experimental Strategy 

For robust design, Taguchi suggests to employ an 
experiment in which orthogonal arrays are used for the 
arrangement of design and noise factors. The design 
factors are assigned to the inner array and noise factors 
to the outer array. Noise factors are not mixed with the 
design factors in a single orthogonal array. Instead, noise 
factors are arranged separately to form different testing 
conditions so that the sensitivity of a performance char-
acteristic to noise factors can be measured by an appro-
priate SN ratio. It is important in every parameter design 

work to identify important noise factors. Engineering 
experiences and judgments are needed in identifying 
them. Figure 1 shows a typical experimental plan for 
parameter design. 

 

Figure 1. Experimental strategy for parameter design 

2.2 Loss Functions and SN Ratios 

Taguchi classifies performance characteristic (y) 
into three categories, i.e., the-smaller-the-better (SB) 
the-larger-the-better (LB), and a-specific-target-best (TB) 
cases. For instance, makespan is the-smaller-the-better 
type, and throughput is of the-larger-the-better type. 
Taguchi suggests that performance be measured by the 
loss incurred due to the deviation of the performance 
characteristic from its target value. In general, the exact 
functional form of the loss may be unknown or com-
plex, and therefore, Taguchi recommends to use a quad-
ratic loss function. For example, let y be TB perform-
ance characteristic and t be its target value. Then, the 
quadratic loss function is defined as ( ) ( )2

L y k y t= - . 
Similarly, for SB and LB cases the quadratic loss func-
tions are respectively given by ( ) ( )2

, L y ky L y= =  
2

k y . The expected loss has two components: one re-
lated to the deviation of the mean y from the target value 
and the other is the variance of y due to noise factors. 
The objective of a robust design is to find the setting of 
process design factors that minimize the expected quad-
ratic loss, which is equi-valent to maximize the SN ratio. 
Depending on the nature of y, Taguchi suggests different 
SN ratios to be maximized. 

3.  GJSP MODEL AND GENETIC ALGO-
RITHM 

3.1  Problem Description of GJSP Model 

The manufacturing system under study consists of 
several machines. A set of jobs 

i
j , i = 1, 2, ..., n, is 

available for processing at time zero. Job 
i

j  requires 

i
n  number of operations with ik and 

ik
P , k = 1, 2, ... , 

i
n , known. Some jobs require processing on certain 
machines more than once in their operation sequences 
with reentrant work flows. Some machines require a 
setup prior to processing each job where setup times are 
sequence dependent. 
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It is useful to represent this problem on a disjunc-
tive graph F(N, A, E), with node set N, conjunctive arc 
set A, and disjunctive arc set E. The nodes of N corre-
spond to operations, the directed arcs of A to precedence 
constraints among the operations of the same job, and 
the pairs of disjunctive arcs of E to pairs of operations to 
be performed on the same machine (Balas 1969). The 
JSP under study can be represented by using the disjunc-
tive graph model (DGM) presented by Ovacik and 
Uzsoy (1997). An example of the DGM of a problem 
with two machines and three jobs is shown in Figure 2. 

Operations 11, 12, 21 and 31 are processed on the 
first machine while 13, 22 and 32 are processed on the 
second machine. Node that source node 0 and sink node 
0* denotes the beginning of processing in the system 
and the completion of the last job, respectively. 

3.2 GA for GJSP Model 

For scheduling problems, Chen et al. (1995) pre-
sented application of GA to flow shop problems in order 
to minimize makespan. Lee and Choi (1995) developed 
a GA for a single machine scheduling problem with due 
dates constraints. Cheng et al. (1996, 1999) gave a tuto-
rial survey of job shop scheduling problems using GA. 
Koonce and Tsai (2000) presented a novel use of data 
mining algorithms to explore the patterns in data gener-
ated by a GA for job shop scheduling. Liu et al. (2006) 
proposed the hybrid Taguchi-genetic algorithm which 
the Taguchi method is inserted between crossover and 
mutaion operations of a GA to solve the classical job 
shop scheduling problem. 

3.2.1 Chromosomal representation 

The first step of developing GA is to encode a solu-
tion as a finite-length string called chromosome. Repre-
sentation plays a key role in the development of GA. For 
each machine in the GJSP under study, some operations 
have the precedence constraints due to reentrant work 
flows. Thus it is important to develop a encoding me-
thod without violating the feasibility of a chromosome. 

In this study, a solution is encoded as a M  (denote the 
number of machines) dimensional vector in which each 
element is a permutation of job numbers for each ma-
chine and decoded as a M  dimensional vector in 
which each element is a permutation of operation num-
bers. Therefore, the length of the chromosome equals to 
the total number of operations to be sequenced. 

For example, consider the problem with two ma-
chines and three jobs shown in figure 1. Note that the 
operation 11, 12 and 13 are element of job 1, 21 and 22 
are job 2, and operation 31 and 32 are job 3. Assign a 
number, from 1 to 7, to each operation in the order of 
job indices, we have, 1 = 11, 2 = 12, 3 = 13, 4 = 21, 5 = 
22, 6 = 31, and 7 = 32. Note that operation 1, 2, 4 and 6 
are performed on the first machine and operation 3, 5 
and 7 are performed on the second machine. And also 
note that there is a precedence constraint between opera-
tion 1 and 2 on the first machine. Then a chromosome 
can be represented as a two dimensional vector such as 
[(1 3 2 1), (2 1 3)] by generating two 1s, one 2, and one 
3 for the first machine and one 1, 2 and 3 for the second 
machine where 1 represents job number 1, 2 job number 
2 and 3 job number 3, respectively. The above chromo-
some can be directly decoded as [(1 6 4 2), (5 3 7)], 
which implies a complete schedule, by assigning a num-
ber, from 1 to 7, to each position starting from job 1 to 
3, sequentially. If the decoded solution turns out to be 
infeasible, the repairing method proposed in section 3.1 
is invoked. Job number encoding/operation number de-
coding method facilitates that the feasibility conditions 
are basically not violated by the crossover operations. 

3.2.2 Reproduction, Crossover and mutation 
Three types of genetic operators, namely reproduc-

tion, crossover and mutation, are applied to an initial 
population randomly generated. Chromosomes with hi-
gher fitness values are selected for crossover and muta-
tion using the reproduction operator. In this study, sto-
chastic remainder sampling without replacement scheme 
(Goldberg 1989) is employed to reduce the stochastic 
errors associated with the traditional roulette wheel se-
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Figure 2. DGR with three jobs and two machines 
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lection. In this process, each chromosome receives cop-
ies as many as integral parts of expected count whereas 
fractional parts are treated as success probabilities. One 
by one, weighted coin tosses (Bernoulli trials) are per-
formed using the fractional parts as success probabili-
ties. This process continues until the size of population 
reaches a certain value. 

After reproduction, members of the newly repro-
duced chromosomes are mated at random. Thereafter, 
crossover operator is invoked to produce two offspring. 
Crossover plays the role of exchanging information 
among chromosome. In this study, we use the order 
crossover (OX) operator (Goldberg 1989) which can be 
applied from the first element to the last ( M th ele-
ment) consecutively between the two elements located 
at the same position in the considered pair of chromo-
somes. In the OX operator, two chromosomes are ali-
gned, and two crossing sites are picked at random along 
the elements. These two points define a matching sec-
tion. To illustrate the OX operator, consider the first two 
elements of considered pair of chromosomes: 

1
c  = 1 3 2 | 1 1 2 | 3 3  

2
c  = 3 2 1 | 2 3 1 | 3 1 

Observing that there are two 1s and one 2 in the match-
ing section of 

1
c , the mate of 

2
c , we randomly pick the 

same number of elements among 1s and 2s from 
2

c . 
Suppose the numbers marked by an H are picked in 

2
c  

as follows : 

2
c  = 3 H H | 2 3 H | 3 1 

Then we exchange the Hs with the neighborhood 
num-bers until all the Hs are in the matching section as 
follows. 

2
c  = 3 2 3 | H H H | 3 1 

Following the OX operator, offspring 
2

c¢  is created. 

2c¢  = 3 2 3 | 1 1 2 | 3 1 

In the same way, 
1

c¢  can be obtained. With the OX 
operation, each offspring contains information partially 
determined by each of its parents. This process contin-
ues to the last element consecutively. 

Since our coding structure treats a schedule as a 
permutation vector, mutation is implemented by some 
type of exchange of position among the jobs. In this 
study, the following mutation operator is utilized in a 
encoded chromosome. Given the current chromosome, 
select an element at random among M  elements. Wi-
thin the selected element, select two positions with dif-
ferent values at random and then swap the genes. 

3.2.3  Fitness function and replacement strategy 

The objective in GA is to find chromosome which 
gives the maximum fitness function value. In this study, 

the following fitness function is adopted: 

jt

j Ct

jt

jt

g

g
p

Î

=

å
                     (1) 

where 
jt

g  is the makespan value of 
jt

c , the jth chro-
mosome in generation t.  

Also, to preserve the best member’s performance in 
the next generation, the elitist strategy (Goldberg 1989) 
is adopted. As a result, the best performing chromosome 
of the previous generation is alive in the current popula-
tion. 

4.  EXPERIMENTAL DESIGN AND ANALYSIS 

4.1  Design Factors and Their Levels 

Once a genetic algorithm is developed, its perform-
ance strongly relies on the parameters of GA. In this 
study, we select four most commonly studied GA pa-
rameters, i.e. population size, stopping condition that 
implies the number of iterations which an improvement 
is not occurred consecutively, crossover rate, and muta-
tion rate. After an extensive preliminary analysis of the 
algorithm, we choose three levels for each parameter 
values. Selected design factors and their levels are listed 
in Table 1. 

 
Table 1. Design factors and their levels 

 

4.2  Noise Factors and Their Levels 

To minimize the sensitivity of a performance char-
acteristic to noise factors, we first need to estimate the 
sensitivity in a consistent manner for any combination 
of the design factor levels. This is achieved through a 
proper selection of testing conditions. Various noise 
factors exist in a job shop type manufacturing system. 
Although it is not necessary to include all noise factors, 
we must use engineering judgment to decide which are 
more important and what testing conditions are appro-
priate to capture their effects. In this study, three noise 
factors are selected while others are judged to be less 
important and therefore ignored. Selected noise factors 
and their levels are listed in Table 2. 

               level 
factor 

1 2 3 

(1) population size (A) 
(2) stopping condition (B) 
(3) crossover rate (C) 
(4) mutation rate (D) 

50 
30 
0.7 
0.5 

100 
40 
0.8 
0.7 

150 
50 
0.9 
0.9 
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4.3  Experimental Design 

In this study, we want to estimate the main effects 
of design factors as well as the interactions AB, AC and 
BC. From the experience, the interactions between the 
population size and the stopping condition is expected. 
Interactions between the population size and the cross-
over rate, and between the stopping condition and the 
crossover rate are also of interest. An efficient way of 
studying the effects of several design factors simultane-
ously is to plan a matrix experiment using an orthogonal 
array. For the inner array, we choose orthogonal array 

13

27
(3 )L  which has 13 three-level columns and 27 rows. 

Design factors A through D are respectively assigned to 
columns 1, 2, 5 and 9. Array containing 12 combinations 
of noise factors are used to determine the test condi-
tions. Factors U, V and W are respectively assigned to 
columns 1 through 3. Each row of the inner array 

27
L  

represents a design of the process. Performance (ma-
kespan) of each design is evaluated by computer ex-
periment under each noise condition specified by the 
outer array. 

4.4  Data Analysis 

The purpose of conducting a matrix experiment is 
to determine the level of each factor that gives the high-
est SN ratio. For the present problem, SN ratios at each 
row of the inner array are calculated as follows. Since 
the ideal value of the makespan is zero, the correspond-
ing SN ratio is given by 

12
2

1

1
10 log( ),

12
j

j

yh
=

= - å               (2) 

where 
j

y  is the normalized deviation of the observed 
makespan at test condition j from the minimum value of 
the condition j. Maximizing h  leads to the minimiza-
tion of the quality loss. After the SN ratios are calcu-
lated, the next step in data analysis is to evaluate the 
significance of each effect on the characteristic. Based 
upon analysis of variance (ANOVA), optimum levels of 
design factors that are statistically significant at level 
0.05 and their contribution ratios are shown in Table 3. 

From Table 3, the optimum settings of design fac-
tors for h  are determined as 

2 3 1
A B D . Factor C has no 

significant effect on the makespan. Therefore, the opti-
mum level of C is determined by the level whose value 

of h  is maximum, 
3

C . The results of a verification 
experiments by the full factorial design show that the 
settings 

3 3 2 1
A B C D  gives the highest h . Also, h  at 

2 3 3 1
A B C D  is very close to h  at 

3 3 2 1
A B C D . Based on 

these fact, we may conclude that optimum design 

2 3 3 1
A B C D  is a good compromising solution. Note that 

this optimal setting is obtained with a far smaller ex-
periment (

27 12
L L´ ) than full factorial (

81 12
L L´ ). 

5.  CONCLUSIONS 

Taguchi’s parameter design method is an important 
tool for robust design. Robust design is an engineering 
methodology for optimizing product and process condi-
tions that are minimally sensitive to the causes of varia-
tion, and which produce high-quality products with low 
development and manufacturing costs. 

In this study, we present a new efficient experimen-
tal design method for parameter optimization in a ge-
netic algorithm for general job shop scheduling problem 
using the Taguchi method. Four genetic parameters in-
cluding the population size, the crossover rate, the muta-
tion rate, and the stopping condition are treated as de-
sign factors. The number of jobs, the number of opera-
tions required to be processed in each job, and the num-
ber of machines are considered as noise factors in gen-
erating various job shop environments. A robust design 
experiment with inner and outer orthogonal arrays is 
conducted by computer simulation, and the optimal pa-
rameter setting is presented which consists of a combi-
nation of the level of each design factor. The validity of 
the optimal parameter setting is investigated by compar-
ing its SN ratios with those obtained by an experiment 
with full factorial designs. 

Table 2. Noise factors and their levels 

                       level 
 factor 

1 2 3 4 

(1) number of jobs (U) 
(2) number of operations per job (V) 
(3) number of machines (W) 

10 
10 
10 

20 
15 
15 

30 
20 
20 

40 
 
 

 

Table 3. Optimum levels with respect to h  

factor Optimal level (contribution ratio) 

A 
B 
C 
D 
AB 
AC 
BC 

2
A  (7.62 %) 

3B
 (23.24 %) 

1
D  (9.22 %) 

2 3
A B  (34.02 %) 
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