• Title/Summary/Keyword: Genetic Map

Search Result 296, Processing Time 0.03 seconds

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

Construction of Linkage Map Using RAPD and SSR Markers in Soybean (Glycine max)

  • / J
    • Korean Journal of Plant Resources
    • /
    • v.10 no.3
    • /
    • pp.241-246
    • /
    • 1997
  • Linkage maps based on molecular markers are valuable tools in plant breeding and genetic studies. A population of 76 RI lines from the mating of A3733 and PI437.088 was evaluated with Random Amplified Polymorphic DNA(RAPD) and Simple Sequence Repeats (SSR) markers to create soybean molecular linkage map, 302 RAPD and 21 SSR markers were genetically linked and formed forty linkage groups. These linkage groups spanned a genetic distance of 1,775 cM. The average distance between markers was 5.5 cM.

  • PDF

The Korean HapMap Project Website

  • Kim, Young-Uk;Kim, Seung-Ho;Jin, Hoon;Park, Young-Kyu;Ji, Mi-Hyun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.91-94
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and are a resource for mapping complex genetic traits. A genome is covered by millions of these markers, and researchers are able to compare which SNPs predominate in people who have a certain disease. The International HapMap Project, launched in October, 2002, motivated us to start the Korean HapMap Project in order to support Korean HapMap infrastructure development and to accelerate the finding of genes that affect health, disease, and individual responses to medications and environmental factors. A Korean SNP and haplotype database system was developed through the Korean HapMap Project to provide Korean researchers with useful data-mining information about disease-associated biomarkers for studies on complex diseases, such as diabetes, cancer, and stroke. Also, we have developed a series of software programs for association studies as well as the comparison and analysis of Korean HapMap data with other populations, such as European, Chinese, Japanese, and African populations. The developed software includes HapMapSNPAnalyzer, SNPflank, HWE Test, FESD, D2GSNP, SNP@Domain, KMSD, KFOD, KFRG, and SNP@WEB. We developed a disease-related SNP retrieval system, in which OMIM, GeneCards, and MeSH information were integrated and analyzed for medical research scientists. The kHapMap Browser system that we developed and integrated provides haplotype retrieval and comparative study tools of human ethnicities for comprehensive disease association studies (http://www.khapmap.org). It is expected that researchers may be able to retrieve useful information from the kHapMap Browser to find useful biomarkers and genes in complex disease association studies and use these biomarkers and genes to study and develop new drugs for personalized medicine.

De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

  • Kim, Hyun A;Shin, Ah-Young;Lee, Min-Seon;Lee, Hee-Jeong;Lee, Heung-Ryul;Ahn, Jongmoon;Nahm, Seokhyeon;Jo, Sung-Hwan;Park, Jeong Mee;Kwon, Suk-Yoon
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.

SNP-Based Genetic Linkage Map and Quantitative Trait Locus Mapping Associated with the Agronomically Important Traits of Hypsizygus marmoreus

  • Oh, Youn-Lee;Choi, In-Geol;Jang, Kab-Yeul;Kim, Min-Seek;Oh, Min ji;Im, Ji-Hoon
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.589-598
    • /
    • 2021
  • White strains of Hypsizygus marmoreus are more difficult to cultivate than are brown strains; therefore, new white strain breeding strategies are required. Accordingly, we constructed the genetic map of H. marmoreus with 1996 SNP markers on 11 linkage groups (LGs) spanning 1380.49 cM. Prior to analysis, 82 backcrossed strains (HM8 lines) were generated by mating between KMCC03106-31 and the progenies of the F1 hybrid (Hami-18 × KMCC03106-93). Using HM8, the first 23 quantitative trait loci (QTLs) of yield-related traits were detected with high limit of detection (LOD) scores (1.98-9.86). The length, thickness, and hardness of the stipe were colocated on LG 1. Especially, length of stipe and thickness of stipe were highly correlated given that the correlation coefficients were negative (-0.39, p value ≤ .01). And a typical biomodal distribution was observed for lightness of the pileus and the lightness of the pileus trait belonged to the LG 8, as did traits of earliness and mycelial growth in potato dextrose agar (PDA) medium. Therefore, results for color traits can be suggested that color is controlled by a multi-gene of one locus. The yield trait was highly negatively correlated with the traits for thickness of the stipe (-0.45, p value ≤ .01). Based on additive effects, the white strain was confirmed as recessive; however, traits of mycelial growth, lightness, and quality were inherited by backcrossed HM8 lines. This new genetic map, finely mapped QTLs, and the strong selection markers could be used in molecular breeding of H. marmoreus.

Development of an Apple F1 Segregating Population Genetic Linkage Map Using Genotyping-By-Sequencing

  • Ban, Seung Hyun;Choi, Cheol
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.434-443
    • /
    • 2018
  • Genotyping-by-sequencing (GBS) has been used as a viable single nucleotide polymorphism (SNP) validation method that provides reduced representation sequencing by using restriction endonucleases. Although GBS makes it possible to perform marker discovery and genotyping simultaneously with reasonable costs and a simple molecular biology workflow, the standard TASSEL-GBS pipeline was designed for homozygous groups, and genotyping of heterozygous groups is more complicated. To addresses this problem, we developed a GBS pipeline for heterozygous groups that called KNU-GBS pipeline, specifically for apple (Malus domestica). Using KNU-GBS pipeline, we constructed a genetic linkage map consisting of 1,053 SNP markers distributed over 17 linkage groups encompassing a total of 1350.1 cM. The novel GBS pipeline for heterozygous groups will be useful for marker-assisted breeding programs, and diverse heterozygous genome analyses.

Loci ordering via the Fiedler vector

  • Kim, Choong-Rak
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.161-166
    • /
    • 2005
  • Locus ordering is the necessary step in constructing genetic map, and the construction of reliable and fine genetic map is one of the most important issue in genetic research area. Locus ordering searches for the best locus order among the possible orders and it amounts to evaluating the maximum likelihood for each order. With only 10 loci, for example, there are 1,814,000 possible orders, and therefore, locus ordering entails a big computational problem. In this paper we suggest a useful algorithm for loci ordering via the Fiedler vector. The suggested algorithm is easy to compute and can handle many loci simultaneously. Furthermore, the required computation time is very short compared to others and the result of locus ordering is very accurate.

  • PDF

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.

A Study on Compressor Map Identification using Artificial Intelligent Technique and Performance Deck Data (인공지능 및 성능덱 데이터를 이용한 압축기 성능도 식별에 관한 연구)

  • Ki Ja-Young;Kong Chang-Duck;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • In order to estimate the gas turbine engine performance precisely, the component maps containing their own performance characteristics should be needed. In this study a component map generation method which may identify compressor map conversely from a performance deck provided by engine manufacturer using genetic algorithms was newly proposed. As a demonstration example for this study, the PW 206C turbo shaft engine for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle). In order to verify the proposed method, steady-state performance analysis results using the newly generated compressor map was compared with them performed by EEPP(Estimated Engine Performance Program) deck provided by engine manufacturer. And also the performance results using the identified maps were compared with them using the traditional scaling method. When the performance analysis is performed at far away operation conditions from the design point, in case of use of e component map by the traditional scaling method, the error of the performance analysis results is greatly increasing. In the other hand, if in case of use of the compressor map generated by the proposed GAs scheme, the performance analysis results are closely met with those by the performance deck, EEPP.

Construction of a Genetic Map using the SSR Markers Derived from "Wonwhang" of Pyrus pyrifolia (배 '원황'(Pyrus pyrifolia) 유전체 해독에 기반한 SSR 마커 개발 및 유전자 지도 작성)

  • Lee, Ji Yun;Seo, Mi-Suk;Won, So Youn;Lim, Kyoung Ah;Shin, Il Sheob;Choi, Dongsu;Kim, Jung Sun
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.434-441
    • /
    • 2018
  • High-density genetic linkage mapping is critical for undertaking marker-assisted selection and confirming quantitative trait loci, as well as helping to build pseudomolecules of genomes. We constructed a genetic map using 94 $F_1$ populations generated from the interspecific cross between Korean cultivar "Wonwhang" (Pyrus pyrifolia, NCBI BioSample SAMN05196235) and European cultivar "Bartlett" (Pyrus communis). We designed a total of 24,267 SSR markers based on the genome sequences of "Wonwhang" for this. To select the markers that are linked to the traits important in pear breeding programs, SSR-containing genomic sequences were subjected to nucleotide sequence homology searches, which resulted in 510 SSR markers with high similarity to genes encoding proteins with putative functions such as transcription factors, resistance proteins, flowering time, and regulatory genes. Of these, 70 markers showed polymorphisms in parents and segregating populations and were used to construct a genetic linkage map, together with the unpublished 579 SNPs obtained from genotyping by sequencing analysis. The genetic linkage map covered 3,784.2 cM and the average distance between adjacent markers was 5.8 cM. Seventy SSR markers were distributed across 17 chromosomes with more than one locus.