• Title/Summary/Keyword: Genetic Map

Search Result 296, Processing Time 0.032 seconds

Genotype analysis of genes involved in increasing grain number per panicle in rice germplasm (벼 유전자원의 수당립수 증진 유전자 유전형 분석)

  • Shin, Dongjin;Kim, Tae-Heon;Lee, Ji-Yoon;Cho, Jun-Hyun;Lee, Jong-Hee;Song, You-Chun;Park, Dong-soo;Oh, Myeong-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.356-363
    • /
    • 2017
  • ARice is an important staple food in the world and rice yield is one of the main traits for rice breeding. Several genes involved in increasing the yield have been identified through map-based gene cloning within natural variations in rice. These identified genes are good targets for introducing a genetic trait in molecular breeding. Here, we chose five genes reported to be involved in increasing grain number per panicle in rice; Gn1a, dep1, Apo1, Ghd7, and Nal1. We developed In/Del markers for Gn1a, and dep1, Apo1, and applied the reported SNP markers for Ghd7 and Nal1. We were easily able to examine the genotype of each gene on agarose gel. We tested the genotypes on 479 rice resources that we held with evaluated molecular markers. According to the genotype of each gene, rice resources were divided into 13 haplotypes, and most of the Indica and Japonica varieties were included in haplotypes 1 and 13, respectively. When we examined the effect of each gene on grain number per panicle and panicle number per plant, panicle number per plant in the yield negative allele group for each gene was reduced by approximately 0.3 to 0.8 compared to that in the yield positive allele group. However, the number of yield positive alleles for each gene was higher by about 21 to 27 grains per panicle than that of yield negative alleles. Although most of the varieties were grouped in haplotypes 1 and 13, we believe that this genotype information with evaluated molecular markers will be useful in rice breeding for increasing the yield with grain number per panicle.

Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium (병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응)

  • Song, Sang-Sun;Lee, Sun;Lee, Mi-Kyoung;Lim, Sung-Young;Cho, Min-Ho;Park, Young-Keun;Park, Kyeong-Ryang;Lee, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

  • PDF

QTL Analysis of Seed and Growth Traits using RIL Population in Soybean (콩 종실 및 생육형질 연관 분자표지 탐색)

  • Kim, Jeong-Soon;Song, Mi-Hee;Lee, Janf-Yong;Ahn, Sang-Nag;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An RIL population from a Shinpaldalkong2/GC83006 cross was employed to identify quantitative trait loci (QTL) associated with agronomic traits in soybean. The genetic map consisted of 127 loci which covered about 3,000cM and were assigned into 20 linkage groups. Phenotypic data were collected for the following traits; plant height, leaf area, flowering time, pubescence color, seed coat color and hilum color in 2005. Seed weight was evaluated using seeds collected in 2003 to 2005 at Suwon and in 2005 at Pyeongchang and Miryang sites. Three QTLs were associated with 100-seed weight in the combined analysis across three years. Among the three QTLs related to seed weight, all GC83006 alleles on LG O ($R^2\;=\;12.5$), LG A1 ($R^2\;=\;10.1$) and LG C2 ($R^2\;=\;11.5$) increased the seed weight. A QTL conditioning plant height was linked to markers including Satt134 (LG C2, $R^2\;=\;25.4$), and the GC83006 allele increased plant height at this QTL locus. For two QTLs related to leaf area, 1aM on LG M ($R^2\;=\;10.0$) and laL on LG L ($R^2\;=\;8.6$), the Shinpaldalkong2 alleles had positive effect to increase the leaf area. Satt134 on LG C2 ($R^2\;=\;41.0$) was associated with QTL for days to flowering. Satt134 (LG C2) showed a linkage to a gene for pubescence color. Satt363 (LG C2) and Satt354 (LG I) were linked to the hilum color gene, and Sat077 (LG D1a) was linked to the seed coat color. The QTL conditioning plant height was in the similar genomic location as the QTLs for days to flowering in this population, indicating pleiotropic effect of one gene or the tight linkage of several genes. These linked markers would be useful in marker assisted selection for these traits in a soybean breeding program.

Mechanisms for Anti-wrinkle Activities from Fractions of Black Chokeberries (블랙초크베리 분획물로부터의 주름억제 효과에 대한 작용기전)

  • Choi, Eun-Young;Kim, Eun-Hee;Lee, Jae-Bong;Do, Eun-Ju;Kim, Sang-Jin;Kim, Se-Hyeon;Park, Jeong-Yeol;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.34-41
    • /
    • 2016
  • Black chokeberries (scientific name Aronia melanocarpa) have been reported to have major effects due to anti-oxidant, anti-inflammatory, and anti-cancer capabilities. In this study, we investigated the anti- wrinkle effects of A. melanocarpa, including collagenase inhibition effects and their molecular biological mechanisms, such as oxidative stress-induced matrix metalloproteinase (MMP), mitogen-activated protein (MAP) kinase, and activator protein (AP)-1 expression and/or phosphorylation. In collagenase inhibition activity, the ethyl acetate fraction of black chokeberry (AE) was 77.2% at a concentration of 500 μg/ml, which was a significant result compared to that of Epigallocatechin gallate (positive control, 83.9% in 500 μg/ml). In the reactive oxygen species (ROS) assay, the AE produced 78% of ROS in 10 μg/ml and 70% of ROS in 75 μg/ml, which was a much lower percentage than the ROS production of H2O2-induced CCRF S-180II cells. In the MTT assay, cell viability was increased dose-dependently with AE in H2O2-induced cells. In protein expression by western blot assay, the AE suppressed the expression and phosphorylation of MMPs (MMP-1, -3, -9), MAPK (ERK, JNK, and p38), and AP-1 (c-Fos and c-Jun), and expressed the pro-collagen type I in H2O2-induced cells. These results suggest that black chokeberries have anti-wrinkle and collagen-production effects, and they may be used in applications for material development in the functional food and cosmetic industries.

Present status and prospect for development of mushrooms in Korea

  • Jang, Kab-Yeul;Oh, Youn-Lee;Oh, Minji;Im, Ji-Hoon;Lee, Seul-Ki;Kong, Won-Sik
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.27-27
    • /
    • 2018
  • The production scale of mushroom cultivation in Korea is approximately 600 billion won, which is 1.6% of the Korean gross agricultural output. Annually, ca. 190,000 tons of mushrooms are harvested in Korea. Although the numbers of mushroom farms and cultivators are constantly decreasing, the total mushroom yields are increasing due to the large-scale cultivation facilities and automation. The recent expansion of the well-being trend causes increase in mushroom consumption in Korea: annual per capita consumption of mushroom was 3.9kg ('13) that is a little higher than European's average. Thus the exports of mushrooms, mainly Flammulina velutipes and Pleurotus ostreatus, have been increased since the middle of 2000s. Recently, however, it is slightly reduced. However, Vietnam, Hong Kong, the United States, the Netherlands and continued to export, and the country has increased recently been exported to Australia, Canada, Southeast Asia and so on. Canned foods of Agaricus bisporus was the first exports of the Korean mushroom industry. This business has reached the peak of the sale in 1977-1978. As Korea initiated trade with China in 1980, the international prices of mushrooms were sharply fall that led to shrink the domestic markets. According to the high demand to develop new items to substitute for A. bisporus, oyster mushroom (Pleurotus ostreatus) was received the attention since it seems to suit the taste of Korean consumers. Although log cultivation technique was developed in the early 1970s for oyster mushroom, this method requires a great deal of labor. Thus we developed shelf cultivation technique which is easier to manage and allows the mass production. In this technique, the growing shelf is manly made from fermented rice straw, that is the unique P. ostreatus medium in the world, was used only in South Korea. After then, the use of cotton wastes as an additional material of medium, the productivity. Currently it is developing a standard cultivation techniques and environmental control system that can stably produce mushrooms throughout the year. The increase of oyster mushroom production may activate the domestic market and contribute to the industrial development. In addition, oyster mushroom production technology has a role in forming the basis of the development of bottle cultivation. Developed mushroom cultivation technology using bottles made possible the mass production. In particular, bottle cultivation method using a liquid spawn can be an opportunity to export the F.velutipes and P.eryngii. In addition, the white varieties of F.velutipes were second developed in the world after Japan. We also developed the new A.bisporus cultivar "Sae-ah" that is easy to grown in Korea. To lead the mushroom industry, we will continue to develop the cultivars with an international competitive power and to improve the cultivation techniques. Mushroom research in Korea nowadays focuses on analysis of mushroom genetics in combination with development of new mushroom varieties, mushroom physiology and cultivation. Further studied are environmental factors for cultivation, disease control, development and utilization of mushroom substrate resources, post-harvest management and improvement of marketable traits. Finally, the RDA manages the collection, classification, identification and preservation of mushroom resources. To keep up with the increasing application of biotechnology in agricultural research the genome project of various mushrooms and the draft of the genetic map has just been completed. A broad range of future studies based on this project is anticipated. The mushroom industry in Korea continually grows and its productivity rapidly increases through the development of new mushrooms cultivars and automated plastic bottle cultivation. Consumption of medicinal mushrooms like Ganoderma lucidum and Phellinus linteus is also increasing strongly. Recently, business of edible and medicinal mushrooms was suffering under over-production and problems in distribution. Fortunately, expansion of the mushroom export helped ease the negative effects for the mushroom industry.

  • PDF

Current Status and Perspective and Future Task in Korea of Crop Genetic Transformation (작물형질전환의 현황과 한국내의 발전전망 및 과제)

  • Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.171-184
    • /
    • 2006
  • According to ISAAA report, the global area of genetically modified (GM) crops increased more than 50 fold during the ten-year period from 1996 to 2005 with a sustained double-digit growth rate of 10%. This biotechnology adoption is one of the highest rates of technology adoption in agriculture history and this phenomenon indicates that the industrial value of the GM crops is highly perspective. In addition, the year 2010, 60% of cereal seeds in the global market would be GM or biotechnology related seeds so that the GM crop regards as the second green revolution that could provide a huge impact to food and agriculture. Nevertheless, there has not been any GM variety ever successfully commercialized in Korea and even none of the GM crops has ever been approved for safety testing by risk assessment. This seems that Korean agriculture industry might be indeed lost in the war of future seed market. However, lots of evidence show that Korean scientists have established advanced technologies and protocols to develop GM crops for last 20 years. Actually there have been many cases of successful transformation of crops that were previously known very difficult in transforming. Therefore, Korean agbiotechnology arena firmly holds an infrastructure for developing GM crops with a superior technology. Then what were the problems? Why has even a single GM crop not been commercialized in Korea? The tardiness shown by business in adopting the GM crop is caused by many factors: academical weakness, poor research funding, short knowledge of risk assessment, public concern, no successful experience, lack of professional leaders on GM variety development, lack of systems toward industrialization and inappropriate target transgenes from the beginning. In order to catch up in the race for the new green industry, each one of us in private sectors alongside academia and national research institutes needs to focus altogether on what can be done best in terms of choosing crops, investing fund and establishing a road map for commercialization of GM crops.