• 제목/요약/키워드: Genetic Identity

검색결과 190건 처리시간 0.031초

ITS 부위의PCR-RFLP 및 STS 마커를 이용한 차가버섯의 종 및 계통간 유연관계 분석 (Identification and Phylogenetic Relationships of Inonotus obliquus Strains by PCR-RFLP of ITS sequences and STS markers)

  • 신평균;공원식;유영복;이금희;오세종;최만수
    • 한국버섯학회지
    • /
    • 제7권4호
    • /
    • pp.150-155
    • /
    • 2009
  • 최근들어 수입량이 급증되고 있는 차가버섯의 분류체계를 확립하고, 이들 종 및 계통간의 유연관계 확립과 품종 구분을 위해 계통학적 정보를 지닌 ITS 영역의 염기서열, PCR-RFLP 및 STS 프라이머를 사용하여 종 특이적인 마커를 개발하였다. 시베리아 캄차카 반도에서 수집된 74008 균주의 염기서열을 이용하여 Inonotus spp.의 유연관계를 분석한 결과 2개의 그룹으로 나뉘어 졌고, I. obliquus DSM 856P균주와 약 98%의 가장 높은 유사성을 나타내어 차가버섯임이 확인되었다. 또한 ITS 증폭산물을 제한효소로 처리하여 밴드 패턴을 비교하였을 때 종 및 계통에 따라 밴드가 다르게 나타났으며, STS primer를 이용하여 증폭산물을 비교하였을 때 종간에는 밴드패턴이 다르나 계통내에서는 동일한 밴드패턴을 보였다. 따라서 차가버섯의 품종 구분을 위해서는 STS 마커와 PCR-RFLP를 동시에 사용함으로서 품종 구분이 좀 더 명확하리라 사료된다.

  • PDF

Isolation and Characterization of Pepper mottle virus Infecting Tomato in Korea

  • Kim, Mi-Kyeong;Kwak, Hae-Ryun;Han, Jung-Heon;Ko, Sug-Ju;Lee, Su-Heon;Park, Jin-Woo;Jonson, Miranda Gilda;Kim, Kook-Hyung;Kim, Jeong-Soo;Choi, Hong-Soo;Cha, Byeong-Jin
    • The Plant Pathology Journal
    • /
    • 제24권2호
    • /
    • pp.152-158
    • /
    • 2008
  • A peculiar virus-like disease of tomato showing yellow mosaic and necrotic spots on leaves and necrosis on veins, petioles and stems was observed at the Tomato Experimental Station (TES), Buyeo, Chungcheongnamdo, Korea. The disease incidence at TES fields ranged from 21 to 35% infecting different tomato cultivars. For this reason, to identify the virus infecting tomato and to characterize the virus based on biology, serology, cytology and at molecular level. Here, leaf samples were randomly collected from different infected tomato cultivars at TES fields and greenhouses and tested by ELISA using Pepper mottle virus (PePMoV) and Tomato mosaic virus (ToMV) antisera. Infected saps were mechanically inoculated in different host plants to test for pathogenicity, symptomatology and host ranges. Infected tissues and ultrathin sections were examined by electron microscopy. Finally, putative coat protein and 3'-untranslated region (CP/3'-UTR) fragment was amplified and cloned for sequence determination and analyzed its genetic relationship to existing PepMoV and PVY sequences at the Genbank. Results showed 69% of the samples were positive with PepMoV, 13% with ToMV and 19 % were doubly infected with PepMoV and ToMV. Symptoms greatly varied from different host plants inoculated with tomato leaf sap infected with PepMoV alone and discussed in detailed in this paper. Electron microscopy from infected tissues showed filamentous particles of 720-750nm in length, a typical morphology and size of PepMoV. In addition, cylindrical inclusion bodies, pinwheels, scrolls and laminates with masses of fibrillar inclusions were also found in ultrathin sections. Alignment of the sequences of the CP/3'-UTR revealed >96% sequence identity with PepMoV and only <61% with PVY. Taken together, all these evidences presented clearly indicated that the causal agent infecting tomato at TES was PepMoV and we designated this PepMoV infecting tomato as Tom-sd2 strain in this study.

Revisiting the Parvilucifera infectans / P. sinerae (Alveolata, Perkinsozoa) species complex, two parasitoids of dinoflagellates

  • Jeon, Boo Seong;Nam, Seung Won;Kim, Sunju;Park, Myung Gil
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.1-19
    • /
    • 2018
  • Members of the family Parviluciferaceae (Alveolata, Perkinsozoa) are the well-known dinoflagellate parasitoids along with Amoebophrya ceratii species complex and parasitic chytrid Dinomyces arenysensis and contain six species across three genera (i.e., Parvilucifera infectans, P. sinerae, P. rostrata, and P. corolla, Dinovorax pyriformis, and Snorkelia prorocentri) so far. Among Parvilucifera species, the two species, P. infectans and P. sinerae, are very similar or almost identical each other morphologically and genetically, thereby make it difficult to distinguish between the two. The only main difference between the two species known so far is the number of sporangium wall (i.e., 2 layers in P. infectans vs. 3 layers in P. sinerae). During sampling in Masan bay, Korea during the spring season of 2015, the dinoflagellate Akashiwo sanguinea cells infected by the parasite Parvilucifera were observed and this host-parasite system was established in culture. Using this culture, its morphological and ultrastructural features with special emphasis on the variation in the number of sporangium wall over developmental times, were investigated. In addition, the sequences of rDNA regions and ${\beta}-tubulin$ genes were determined. The result clearly demonstrated that the trophocyte at 36 h was covered with 4 layers, and then outer layer of the sporocyte gradually degraded over time, resulting in wall structure consisting of two layers, with even processes being detached from 7-day-old sporangium with smooth surface, indicating that the difference in the number of layers seems not to be an appropriate ultrastructural character for distinguishing P. infectans and P. sinerae. While pairwise comparison of the large subunit rDNA sequences showed 100% identity among P. infectans / P. sinerae species complex, genetic differences were found in the small subunit (SSU) rDNA sequences but the differences were relatively small (11-13 nucleotides) compared with those (190-272 nucleotides) found among the rest of Parvilucifera species (P. rostrata and P. corolla). Those small differences in SSU rDNA sequences of P. infectans / P. sinerae species complex may reflect the variations within inter- strains of the same species from different geographical areas. Taken together, all morphological, ultrastructural, and molecular data from the present study suggest that they are the same species.

Trametes villosa Lignin Peroxidase (TvLiP): Genetic and Molecular Characterization

  • Carneiro, Rita Terezinha de Oliveira;Lopes, Maiza Alves;Silva, Marilia Lordelo Cardoso;Santos, Veronica da Silva;Souza, Volnei Brito de;Sousa, Aurizangela Oliveira de;Pirovani, Carlos Priminho;Koblitz, Maria Gabriela Bello;Benevides, Raquel Guimaraes;Goes-Neto, Aristoteles
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.179-188
    • /
    • 2017
  • White-rot basidiomycetes are the organisms that decompose lignin most efficiently, and Trametes villosa is a promising species for ligninolytic enzyme production. There are several publications on T. villosa applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from T. villosa strain CCMB561 from the Brazilian semiarid region. The presence of ligninolytic enzymes produced by this strain grown in inducer media was qualitatively and quantitatively analyzed by spectrophotometry, qPCR, and dye fading using Remazol Brilliant Blue R. The spectrophotometric analysis showed that LiP activity was higher than that of MnP. The greatest LiP expression as measured by qPCR occurred on the $7^{th}$ day, and the ABSA medium (agar, sugarcane bagasse, and ammonium sulfate) was the best that favored LiP expression. The amplification of the TvLiP gene median region covering approximately 50% of the T. versicolor LPGIV gene (87% identity); the presence of Trp199, Leu115, Asp193, Trp199, and Ala203 in the translated amplicon of the T. villosa mRNA; and the close phylogenetic relationship between TvLiP and T. versicolor LiP all indicate that the target enzyme is a lignin peroxidase. Therefore, T. villosa CCMB561 has great potential for use as a LiP, MnP, and Lac producer for industrial applications.

Tissues Expression, Polymorphisms of IFN Regulatory Factor 6 (IRF6) Gene and Their Associated with Immune Traits in Three Pig Populations

  • Liu, Yang;Xu, Jingeng;Fu, Weixuan;Weng, Ziqing;Niu, Xiaoyan;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권2호
    • /
    • pp.163-169
    • /
    • 2012
  • Interferon regulatory factor 6 (IRF6) gene is a member of the IRF-family, and plays functionally diverse roles in the regulation of the immune system. In this report, the 13,720 bp porcine IRF6 genomic DNA structure was firstly identified with a putative IRF6 protein of 467 amino acids. Alignment and phylogenetic analysis of the porcine IRF6 amino acid sequences with their homologies to other species showed high identity (over 96%). Tissues expression of IRF6 mRNA was observed by RT-PCR, the results revealed IRF6 expressed widely in eight tissues. One SNP (HQ026023:1383 G>C) in exon7 and two SNPs (HQ026023:130 G>A; 232 C>T) in the 5′ promoter region of porcine IRF6 gene were demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with immune traits including IFN-${\gamma}$ and IL10 concentrations in serum was carried out in three pig populations including Large White, Landraces and Songliao Black pig (a Chinese indigenous breed). The results showed that the SNP (HQ026023:1383 G>C) was significantly associated with the level of IFN-${\gamma}$ (d 20) in serum (p = 0.038) and the ratio of IFN-${\gamma}$ to IL10 (d 20) in serum (p = 0.041); The other two SNPs (HQ026023:130 G>A; 232 C>T) were highly significantly associated with IL10 level in serum both at the day 20 (p = 0.005; p = 0.001) and the day 35 (p = 0.004; p = 0.006). Identification of the porcine IRF6 gene will help our further understanding of the molecular basis of the IFN regulation pathway in the porcine immune response. All these results should indicate that the IRF6 gene can be regarded as a molecular marker associated with the IL10 level in serum and used for genetic selection in the pig breeding.

북방산 개구리 난소의 Cytochrome $P450_{C17}$ 유전자 특성 (Characterization of Ovarian Cytochrome $P450_{C17}$ (17 ${\alpha}-hydroxylase$/17,20-lyase) in Rana dybowski)

  • 강해묵
    • 한국발생생물학회지:발생과생식
    • /
    • 제10권2호
    • /
    • pp.127-133
    • /
    • 2006
  • 스테로이드 합성효소 중 $17\;{\alpha}-hydroxylase/17,20-lyase(P450_{C17})$는 progesterone을 $17\;{\alpha}-hydroxyprogesterone$을 거쳐 androstenedione으로 변환을 담당하는 효소이다. 양서류 난소에서 스테로이드 합성의 분자적 조절과정의 연구에 사용할 목적으로 북방산 개구리(Rana dybowskii) 난소에서 $P450_{C17}$ cDNA를 클로닝 하였다. 북방산 개구리 난포세포의 cDNA library 검색을 통해 분리된 약 2.5kb의 cDNA는 529개의 아미노산을 가진 단일 번역틀을 가지고 있었다. 개구리 $P450_{C17}$의 아미노산 서열은 Xenopus와는 76%, 닭과는 63%, 그리고 사람과는 약 45%의 동일성을 보여 주였고, 동시에 진화적으로 척추동물에서 매우 잘 보존된 아미노산 서열을 가지고 있었다. 노던 분석에서 개구리의 $P450_{C17}$ 전사체는 난소에서만 2.5kb와 3.6kb 크기의 두 종류가 발견되었다. 그리고 개구리 Rana $P450_{C17}$ cDNA는 비스테로이드 합성 세포인 COS-1세포에서 분명한 $17\;{\alpha}-hydroxylase/17,20-lyase$ 활성을 주었다. 따라서 클로닝된 개구리 $P450_{C17}$ 유전자는 양서류의 난소에서 스테로이드 합성의 분자적 기작을 연구하는데 매우 유용할 것으로 사료된다.

  • PDF

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권8호
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.

Genetic signature of strong recent positive selection at interleukin-32 gene in goat

  • Asif, Akhtar Rasool;Qadri, Sumayyah;Ijaz, Nabeel;Javed, Ruheena;Ansari, Abdur Rahman;Awais, Muhammd;Younus, Muhammad;Riaz, Hasan;Du, Xiaoyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.912-919
    • /
    • 2017
  • Objective: Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods: By using fixation index ($F_{ST}$) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and $F_{ST}$. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. Results: IL-32 is detected under positive selection using the $F_{ST}$ simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. Conclusion: This study provides evidence for IL-32 gene as under significant positive selection in goat.

Entomopathogenic Fungi의 ITS 영역에 대한 RFLP 분석 (Genetic Relationships of Internal Transcribed Spacer (ITS) Regions on Entomopathogenic Fungi by RFLP)

  • 최인영;유영진;최정식;이왕휴
    • 한국균학회지
    • /
    • 제28권2호
    • /
    • pp.112-117
    • /
    • 2000
  • 야생에 서식하고 있는 번데기 및 성충에 감염된 기주의 자실체로부터 동충하초속균 3속 14균주를 분리하였고, RFLP에 의한 유전정보를 이용하여 ITS 영역에 대한 유연관계를 분석하였다. 수집된 각 균주의 rDNA ITS I과 II 부위를 primer ITS 1과 ITS 4를 사용하여 PCR에 의해 증폭한 결과 증폭된 산물은 500 bp크기로 잘 보존되어 종간 또는 속간 서로 구분되지 않았다. 따라서 증폭산물을 7종의 제한효소로 절단하여 밴드상을 관찰한 결과 수집된 Paecilomyces tenuipes 4균주와 Beauveria bassiana 2균주, JB3 균주를 제외한 Cordyceps militaris 6균주는 각각 동일 종으로 분류되었다. 한편 C. scarabaeicola 균주는 7종의 제한효소에서 모두 B. bassiana의 밴드와 일치하여 C. scarabaeicola의 불완전세대는 B. bassiana로 간주되었다. 제한 효소 중에 Paecilomyces속과 Cordyceps 속간 구분에 용이한 제한효소는 CfoI, HpaII이었으며, 그중 CfoI는 Paecilomyces, Cordyceps, Beauveria속간 구분에 용이하였다. UPGMA 분석결과 P. tenuipes, C. militaris, C. scarabaeicola와 B. bassiana, JB4 균주 등 4개의 군으로 그룹화되었으며, 그룹간에는 100% 유의수준을 나타냈다. 따라서 rDNA-RFLP 분석에서 속간 유연관계는 적었으나 종간 유연관계는 가까운 결과를 얻었다.

  • PDF

Rhizina undulata rDNA ITS 영역의 PCR 검정 및 염기배열 분석 (PCR Detection and Sequence Analysis of the rDNA ITS Regions of Rhizina undulata)

  • 이선근;이종규;김경희;이승규;이상용
    • 한국산림과학회지
    • /
    • 제96권4호
    • /
    • pp.425-431
    • /
    • 2007
  • Rhizina undulata의 PCR 검정 및 유전적 특성 분석을 목적으로, rDNA ITS 영역의 염기배열 해석 및 PCR 방법에 의한 토양으로부터 R. undulata의 진단법을 개발하였다. 18S rDNA 부분의 염기서열 분석 결과, 공시한 4종의 균주 모두 1,375 nt의 크기로 동일하였으며, 염기배열도 100% 일치하였다. 한편, rDNA ITS 영역의 염기배열은 585 nt이었고, PDK-1, PTT-1 및 PDJ-9 균주는 염기배열이 100% 동일하였으나, PDS-5균주에서는 두 곳에서 염기의 치환이 발견되었다. 이와 같은 염기배열을 분석하여 제작한 R. undulata rDNA ITS 영역 특이적 primer를 이용한 PCR 검정 결과, R. undulata 균주들에서만 약 525 bp 크기의 ITS 영역 특이적인 증폭산물이 검출되었다. PCR 방법에 의하여 검출할 수 있는 토양 중의 R. undulata 최소 균사량의 한계를 확인하기 위해서, 순수 배양한 R. undulata 균사현탁액을 순차 희석하여 100g의 사양토에 혼합한 다음, 농도별로 균사 혼합한 각각의 토양 시료로부터 추출한 total DNA의 PCR 증폭산물을 분석한 결과, PCR 방법에 의하여 100g의 토양 중에 1 ng의 R. undulata 균사가 함유되어 있는 경우까지 검출이 가능하였다.