• 제목/요약/키워드: Genetic Approach

검색결과 1,323건 처리시간 0.029초

역복사경계해석을 위한 다양한 조정기법 비교 (Comparison of Regularization Techniques For an Inverse Radiation Boundary Analysis)

  • 김기완;백승욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1288-1293
    • /
    • 2004
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach of adopting the genetic algorithm as an initial value selector, whereas using the conjugate-gradient method and Newton method to reduce their dependence on the initial value.

  • PDF

서비스 위치 그룹핑을 위한 보로노이 다이어그램 기반의 유전자알고리듬 (Regrouping Service Sites: a Genetic Approach using a Voronoi Diagram)

  • 서정연;박상민;정인재;김덕수
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.179-187
    • /
    • 2005
  • In this paper, we consider the problem of regrouping a number of service sites into a smaller number of service sites called centers. Each service site is represented as a point in the plane and has an associated value of service demand. We aim to group the sites so that each group has the balanced service demand and the sum of distances from the sites in the group to their corresponding center is minimized. To solve this problem, we propose a hybrid genetic algorithm that is combined with Voronoi diagrams. We provide a variety of experimental results by changing the weights of the two factors: service demands and distances. Our hybrid algorithm finds better solutions in a shorter computation time in comparison with a pure genetic algorithm.

  • PDF

이산사건 시뮬레이션과 유전자 알고리즘을 이용한 제조업 공장의 라인 최적화 (Manufacturing Line Optimization for Discrete Event Simulation and Genetic Algorithm)

  • 정영수;임현준;지해성;이광국
    • 한국CDE학회논문집
    • /
    • 제13권1호
    • /
    • pp.67-75
    • /
    • 2008
  • In spite of rapidly increasing interests in digital manufacturing, there still lacks of a systematic approach in manufacturing line flow analysis via modeling and simulation; currently, the parameters for designing manufacturing line are defined by being solely based on engineers experiences. The paper proposes an application of the genetic algorithm to a discrete event line simulation finding optimal set of parameters for manufacturing line balancing problem. The proposed method has been applied to two example problems-one is a simple manufacturing model and the other for shipyard industry-in order to demonstrate its validity and usefulness.

HVDC 시스템에 대한 유전자 알고리즘을 사용한 새로운 퍼지 제어기의 설계 (A New Design of Fuzzy controller for HVDC system with the aid of GAs)

  • 왕중선;양정제;노석범;안태천
    • 제어로봇시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.221-226
    • /
    • 2006
  • In this paper, we study an approach to design a Fuzzy PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of traditional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. In order to solve the above problems, we adapt Fuzzy PI controller for the fire angle control of rectifier. The performance of the Fuzzy PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain factors of the Fuzzy PI controller by Genetic Algorithms. A comparative study has been performed between Fuzzy PI controller and traditional PI controller, to prove the superiority of the proposed scheme.

Hybrid Optimization Strategy using Response Surface Methodology and Genetic Algorithm for reducing Cogging Torque of SPM

  • Kim, Min-Jae;Lim, Jae-Won;Seo, Jang-Ho;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.202-207
    • /
    • 2011
  • Numerous methodologies have been developed in an effort to reduce cogging torque. However, most of these methodologies have side effects that limit their applications. One approach is the optimization methodology that determines an optimized design variable within confined conditions. The response surface methodology (RSM) and the genetic algorithm (GA) are powerful instruments for such optimizations and are matters of common interest. However, they have some weaknesses. Generally, the RSM cannot accurately describe an object function, whereas the GA is time consuming. The current paper describes a novel GA and RSM hybrid algorithm that overcomes these limitations. The validity of the proposed algorithm was verified by three test functions. Its application was performed on a surface-mounted permanent magnet.

Hybrid Induction Motor Control Using a Genetically Optimized Pseudo-on-line Method

  • Lee, Jong-seok;Jang, Kyung-won;J. F. Peters;Ahn, Tae-chon
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.127-137
    • /
    • 2004
  • This paper introduces a hybrid induction motor control using a genetically optimized pseudo-on-line method. Optimization results from the use of a look-up table based on genetic algorithms to find the global optimum of an unconstrained optimization problem. The approach to induction motor control includes a pseudo-on-line procedure that optimally estimates parameters of a fuzzy PID (FPID) controller. The proposed hybrid genetic fuzzy PID (GFPID) controller is applied to speed control of a 3-phase induction motor and its computer simulation is carried out. Simulation results show that the proposed controller performs better than conventional FPID and PID controllers. The contribution of this paper is the introduction of a high performance hybrid form of induction motor control that makes on-line and real-time control of the drive system possible.

시스템 안정도 향상을 위하여 SVC를 포함한 전력계통의 최적 GA-PI 제어기 설계 (A Design of Optimal GA-PI Controller of Power System with SVC to Improve System Stability)

  • 정형환;허동렬;이종민;주석민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.63-71
    • /
    • 2000
  • This paper deals with a systematic approach to GA-PI controller design for static VAR compensator(SVC) using genetic algorithm(GA) to improve system stability. Genetic algorithms(GAs) are search algorithms based on the mechanics of natural selection and natural genetics. To verify the validity of the proposed method, investigated damping ratio of the eigenvalues of the electro-mechanical modes system with and without SVC. Also, we considered dynamic response of terminal speed deviation and terminal voltage deviation by applying a power fluctuation at heavy load, normal load and light to verify the robustness of the proposed. Thus, we proved usefulness of GA-PI controller design to improve the stability of single machine-bus with SVC system.

  • PDF

신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상 (Improvement of Thickness Accuracy in Hot-rolling Mill Using Neural Network and Genetic Algorithm)

  • 손준식;김일수;이덕만;권영섭
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.59-64
    • /
    • 2006
  • The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved in order to achieve the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties). The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and design of mill requirement. To achieve this objectives, a new teaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

Experimental studies on impact damage location in composite aerospace structures using genetic algorithms and neural networks

  • Mahzan, Shahruddin;Staszewski, Wieslaw J.;Worden, Keith
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.147-165
    • /
    • 2010
  • Impact damage detection in composite structures has gained a considerable interest in many engineering areas. The capability to detect damage at the early stages reduces any risk of catastrophic failure. This paper compares two advanced signal processing methods for impact location in composite aircraft structures. The first method is based on a modified triangulation procedure and Genetic Algorithms whereas the second technique applies Artificial Neural Networks. A series of impacts is performed experimentally on a composite aircraft wing-box structure instrumented with low-profile, bonded piezoceramic sensors. The strain data are used for learning in the Neural Network approach. The triangulation procedure utilises the same data to establish impact velocities for various angles of strain wave propagation. The study demonstrates that both approaches are capable of good impact location estimates in this complex structure.

유전자 알고리즘 적용을 통한 향상된 RRS Logic 개발 (Improved RRS Logical Architecture using Genetic Algorithm)

  • 심효섭;정재천
    • 시스템엔지니어링학술지
    • /
    • 제12권2호
    • /
    • pp.115-125
    • /
    • 2016
  • An improved RRS (Reactor Regulating System) logic is implemented in this work using systems engineering approach along with GA (Genetic Algorithm) deemed as providing an optimal solution to a given system. The current system works desirably and has been contributed to the safe and stable NPP operation. However, during the ascent and decent section of the reactor power, the RRS output reveals a relatively high steady state error and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this research proposes applying genetic algorithm to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse-engineering is implemented to build a Simulink-based RRS model and re-engineering is followed to apply the GA and to produce a newly-configured RRS generating an output that has a reduced steady state error and diminished overshoot level.