• 제목/요약/키워드: Genetic Algorithms

검색결과 1,596건 처리시간 0.024초

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

Designing New Algorithms Using Genetic Programming

  • Kim, Jin-Hwa
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.171-178
    • /
    • 2004
  • This study suggests a general paradigm enhancing genetic mutability. Mutability among heterogeneous members in a genetic population has been a major problem in application of genetic programming to diverse business problems. This suggested paradigm is implemented to developing new methods from existing methods. Within the evolutionary approach taken to designing new methods, a general representation scheme of the genetic programming framework, called a kernel, is introduced. The kernel is derived from the literature of algorithms and heuristics for combinatorial optimization problems. The commonality and differences among these methods have been identified and again combined by following the genetic inheritance merging them. The kernel was tested for selected methods in combinatorial optimization. It not only duplicates the methods in the literature, it also confirms that each of the possible solutions from the genetic mutation is in a valid form, a running program. This evolutionary method suggests diverse hybrid methods in the form of complete programs through evolutionary processes. It finally summarizes its findings from genetic simulation with insight.

  • PDF

Heuristic Algorithms for Parallel Machine Scheduling Problems with Dividable Jobs

  • Tsai, Chi-Yang;Chen, You-Ren
    • Industrial Engineering and Management Systems
    • /
    • 제10권1호
    • /
    • pp.15-23
    • /
    • 2011
  • This research considers scheduling problems with jobs which can be divided into sub-jobs and do not required to be processed immediately following one another. Heuristic algorithms considering how to divide jobs are proposed in an attempt to find near-optimal solutions within reasonable run time. The algorithms contain two phases which are executed recursively. Phase 1 of the algorithm determines how jobs should be divided while phase 2 solves the scheduling problem given the sub-jobs established in phase 1. Simulated annealing and genetic algorithms are applied for the two phases and four heuristic algorithms are established. Numerical experiment is conducted to determine the best parameter values for the heuristic algorithms. Examples with different sizes and levels of complexity are generated. Performance of the proposed algorithms is evaluated. It is shown that the proposed algorithms are able to efficiently and effectively solve the considered problems.

마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계 (Optimal Design of Composite Laminated Stiffened Structures Using micro Genetic Algorithm)

  • 이무근;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.268-271
    • /
    • 2005
  • Researches based on genetic algorithms have been performed in composite laminated structures optimization since 1990. However, conventional genetic algorithms have a disadvantage that its augmentation of calculation costs. A lot of variations have been proposed to improve the performance and efficiency, and micro genetic algorithm is one of them. In this paper, micro Genetic Algorithm was employed in the optimization of laminated stiffened composite structures to maximize the linear critical buckling load and the results from both conventional genetic algorithm and micro genetic algorithm were compared.

  • PDF

Genetic Algorithm을 이용한 상수관망의 최적설계: (I) -비용 최적화를 중심으로- (Optimal Design of Water Distribution Networks using the Genetic Algorithms: (I) -Cost optimization-)

  • 신현곤;박희경
    • 상하수도학회지
    • /
    • 제12권1호
    • /
    • pp.70-80
    • /
    • 1998
  • Many algorithms to find a minimum cost design of water distribution network (WDN) have been developed during the last decades. Most of them have tried to optimize cost only while satisfying other constraining conditions. For this, a certain degree of simplification is required in their calculation process which inevitably limits the real application of the algorithms, especially, to large networks. In this paper, an optimum design method using the Genetic Algorithms (GA) is developed which is designed to increase the applicability, especially for the real world large WDN. The increased to applicability is due to the inherent characteristics of GA consisting of selection, reproduction, crossover and mutation. Just for illustration, the GA method is applied to find an optimal solution of the New York City water supply tunnel. For the calculation, the parameter of population size and generation number is fixed to 100 and the probability of crossover is 0.7, the probability of mutation is 0.01. The yielded optimal design is found to be superior to the least cost design obtained from the Linear Program method by $4.276 million.

  • PDF

Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms

  • Ozturk, Hasan Tahsin;Turkeli, Erdem;Durmus, Ahmet
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.435-453
    • /
    • 2016
  • The main purpose of this study is to perform optimum cost design of cut and cover RC shallow tunnels using Artificial bee colony and genetic algorithms. For this purpose, mathematical expressions of objective function, design variables and constraints for the design of cut and cover RC shallow tunnels were determined. By using these expressions, optimum cost design of the Trabzon Kalekapisi junction underpass tunnel was carried out by using the cited algorithms. The results obtained from the algorithms were compared with the results obtained from traditional design and remarkable saving from the cost of the tunnel was achieved.

연속탐색공간에 대한 진화적 해석 (Evolutionary Analysis for Continuous Search Space)

  • 이준성;배병규
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.206-211
    • /
    • 2011
  • 본 논문에서는 연속적인 파라미터 공간에 대한 최적화에 대해 진화적 알고리즘의 특징적인 형상화를 제시한다. 이 방법은유전알고리즘이 연속적인 탐색공간에서의 파라미터 식별에 대해 가장 강점을 지녔다는 점에 착안한 것이다. 유전알고리즘과 제안한 알고리즘과의 주요한 차이점은 개별적 또는 연속적인 묘사의 차이가 있다는 것이다. 잘 알려진 실험함수의 최적화문제를 도입하여 연속 탐색공간 문제에 대해 제안하는 알고리즘에 대해 계산시간 및 사용메모리 등의 성능이 우수하다는 효율성을 보였다.

Automatic Fuzzy Rule Generation Utilizing Genetic Algorithms

  • Hee, Soo-Hwang;Kwang, Bang-Woo
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.40-49
    • /
    • 1992
  • In this paper, an approach to identify fuzzy rules is proposed. The decision of the optimal number of fuzzy rule is made by means of fuzzy c-means clustering. The identification of the parameters of fuzzy implications is carried out by use of genetic algorithms. For the efficinet and fast parameter identification, the reduction thechnique of search areas of genetica algorithms is proposed. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of Gas Furnace. Despite the simplicity of the propsed apprach the accuracy of the identified fuzzy model of gas furnace is superior as compared with that of other fuzzy modles.

  • PDF

천장형 설비의 배치 설계를 위한 해법의 개발 (Algorithms on layout design for overhead facility)

  • 양병학
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.133-142
    • /
    • 2011
  • Overhead facility design problem(OFDP) is one of the shortest rectilinear flow network problem(SRFNP)[4]. Genetic algorithm(GA), artificial immune system(AIS), population management genetic algorithm (PM) and greedy randomized adaptive search procedures (GRASP) were introduced to solve OFDP. A path matrix formed individual was designed to represent rectilinear path between each facility. An exchange crossover operator and an exchange mutation operator were introduced for OFDP. Computer programs for each algorithm were constructed to evaluate the performance of algorithms. Computation experiments were performed on the quality of solution and calculations time by using randomly generated test problems. The average object value of PM was the best of among four algorithms. The quality of solutions of AIS for the big sized problem were better than those of GA and GRASP. The solution quality of GRASP was the worst among four algorithms. Experimental results showed that the calculations time of GRASP was faster than any other algorithm. GA and PM had shown similar performance on calculation time and the calculation time of AIS was the worst.

Structural optimization in practice: Potential applications of genetic algorithms

  • Krishnamoorthy, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.151-170
    • /
    • 2001
  • With increasing competition, the engineering industry is in need of optimization of designs that would lead to minimum cost or weight. Recent developments in Genetic Algorithms (GAs) makes it possible to model and obtain optimal solutions in structural design that can be put to use in industry. The main objective of this paper is to illustrate typical applications of GAs to practical design of structural systems such as steel trusses, towers, bridges, reinforced concrete frames, bridge decks, shells and layout planning of buildings. Hence, instead of details of GA process, which can be found in the reported literature, attention is focussed on the description of the various applications and the practical aspects that are considered in Genetic Modeling. The paper highlights scope and future directions for wider applications of GA based methodologies for optimal design in practice.