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Abstract. This research considers scheduling problems with jobs which can be divided into sub-jobs and do not 
required to be processed immediately following one another. Heuristic algorithms considering how to divide jobs 
are proposed in an attempt to find near-optimal solutions within reasonable run time. The algorithms contain two 
phases which are executed recursively. Phase 1 of the algorithm determines how jobs should be divided while 
phase 2 solves the scheduling problem given the sub-jobs established in phase 1. Simulated annealing and 
genetic algorithms are applied for the two phases and four heuristic algorithms are established. Numerical 
experiment is conducted to determine the best parameter values for the heuristic algorithms. Examples with 
different sizes and levels of complexity are generated. Performance of the proposed algorithms is evaluated. It is 
shown that the proposed algorithms are able to efficiently and effectively solve the considered problems. 
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1.  INTRODUCTION 

Parallel machine scheduling problems are com-
monly seen in practice. A group of jobs are to be assign-
ned to a group of machines and the processing sequen-
ces of jobs on each machine are determined as well. In 
many cases, a job contains several stages that are to be 
processed in sequence. Such a job can be divided into 
several smaller sub-jobs with each stage representing a 
sub-job. Processing of sub-jobs does not have to be in an 
immediate sequence. They do not even have to be proc-
essed on the same machine. Examples of dividable jobs 
can be found in automotive part processing. The manu-
facturing process of certain automotive parts includes 
spray painting. Different parts require various numbers 
of layers of paint. The layers of paint on one part have to 
be sprayed on in a specific sequence but the operations 
do not have to be done with one immediately following 
another. Therefore, one can work on a part by spraying 
on all the necessary layers of paint and then move on to 
another part. Or one can work on a particular layer of 
paint (a particular color, for example) to all the parts that 
require it, and then switch to work on another layer of 
paint.  

Apparently, allowing job splitting provides more 
options in setting up job schedules and possibly finding 
better solutions. However, dividing jobs into sub-jobs 
implies increasing numbers of jobs (sub-jobs) to be sche-
duled and needs greater effort to find better job sched-
ules. Consequently, splitting jobs into the most number 
of sub-jobs allowed is not necessary the best option due 
to long search time for finding better solutions. Ques-
tions arise that how to determine proper ways to divide 
jobs to improve solution quality, and maintain search 
effort for better solutions within acceptable range at the 
same time. The goal of this study is to develop heuristic 
algorithms by applying simulated annealing and genetic 
algorithms for effectively and efficiently solving the pa-
rallel machine scheduling problem with dividable jobs 
to minimize total tardiness. 

There are many studies on parallel machine sched-
uling problems, including Azizoglu and Kirca (1998), 
Dessouky et al. (1998), Azizoglu and Kirca (1999), Yala-
oui and Chu (2002), Bilge et al. (2004), and Armentano 
and de França Filho (2007). Tan et al. (2000) considered 
sequence-dependent setup time and evaluated the perfor-
mance of several technique, including branch-and-bound 
method, genetic algorithm and simulated annealing al-
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gorithm. Liao and Lin (2003) studied makespan minimi-
zation for two uniform parallel machines and compared 
two methods, LPT and MULTIFIT. 

Several studies utilized simulated annealing algo-
rithm on parallel machine scheduling problems, includ-
ing Piersma and Dijk (1996), Anagnostopoulos and Ra-
badi (2002), Kim et al. (2002), Kim et al. (2003), and 
Low (2005). Kim et al. (2006) approached unrelated pa-
rallel machine scheduling problems with sequence-de-
pendent setup time using a number of heuristic method, 
including simulated annealing algorithm. Guo et al. (2007) 
applied simulated annealing and tabu search to unrelated 
parallel machine scheduling problems with an objective 
of minimizing makespan. Genetic algorithm is another 
common heuristic algorithm applied to machine sched-
uling problems, such as Mason (1992), Cheng et al. (1995), 
Rubin and Ragatz (1995), Min and Cheng (1999) and 
Tan et al. (2000). 

The rest of the paper is organized as follows. The 
next section describes the settings on the considered 
dividable jobs and scheduling problems. Section 3 pre-
sents the proposed two-phase heuristic algorithm and 
how it is designed utilizing simulated annealing algo-
rithm and genetic algorithm. Section 4 introduces an 
index to evaluate the complexity level of test instances 
and generation of test instances. The conducted numeri-
cal experiment and analytical results are presented in 
Section 5. This paper concludes in Section 6. 

2.  PROBLEM DECRIPTION 

This paper considers the problem of scheduling di-
vidable jobs on identical parallel machine with an objec-
tive to minimize total tardiness. It is assumed that jobs 
can be divided into sub-jobs. Sub-jobs divided from the 
same job have to be processed in a specific sequence but 
not necessary immediately follow one another. Taking a 
three-stage job as an example, the process of job A con-
tains three stages, A1, A2 and A3, or equivalently, there 
are two cut points. Stage A1 has to be finished before 
stage A2 can be processed. Likewise, stage A3 can only 
be processed after stage A2 is completed. However, the 
processing of stage A2 does not have to begin right after 
the completion of stage A1. Similarly, stage A3 can be 
assigned to another machine after stage A2 is finished.  

Figure 1 shows the four possible settings of proc-
essing job A. The three stages can be processed in se-
quence with one stage immediately following another, 
as illustrated by setting 1. They can also be processed 
separately, even on different machines, as shown by 
setting 2. In this case, job A is divided into three sub-
jobs, each containing one stage. In the third setting, 
stage A1 and stage A2 form a sub-job and are processed 
in immediate sequence. Stage A3 is treated as a sub-job 
and can be processed later. In the last setting, there are 
also two sub-jobs. Stage A2 and stage A3 form a sub-job 
which can be processed after the sub-job consisting of 

stage A1 is done. Sub-jobs from the same job cannot be 
processed at the same time.  

Splitting jobs into smaller sub-jobs increases flexi-
bility of job scheduling, thus better job schedules can be 
found. However, it also increases the number of jobs to 
be scheduled and more effort is needed to search for 
better solutions. For example, a group of 10 jobs are to 
be scheduled for process. Each job contains 3 stages and 
can be divided in the way as illustrated in Figure 1. If 
every job is divided into 3 sub-jobs, the effective num-
ber of jobs to be scheduled increases from 10 to 30. Ef-
fort on searching for optimal or near-optimal solutions 
rises exponentially as the number of jobs increases. 
Granted, chances to find the optimal solution are the 
highest if jobs are divided into as many sub-jobs as pos-
sible. However, it is impractical if there too many jobs 
to be scheduled. 

 
A1 – A2 – A31

2

3

4A1 A2 A3

A1 – A2 A3

A2 – A3A1  
Figure 1. Possible settings of processing a 3-stage job. 

 
The aim of this study is to utilize the characteristic 

of dividable jobs and develop methods to properly split 
jobs to increase scheduling flexibility, leading to better 
solutions, and control the search effort within reasonable 
range at the same time. For this purpose, heuristic algo-
rithms are developed to find a balance between solution 
quality and search efficiency. 

 
The following assumptions are made in this study. 

1. The numbers of jobs and machines are known and 
fixed. 

2. Available cut points of each job are known and 
fixed. 

3. The processing time of each stage of a job is 
known. 

4. The processing time of a sub-job is the sum of the 
processing times of the job stages in the sub-job. 

5. A machine can only process one job (sub-job) at a 
time. 

6. Job (sub-job) processing is non-preemptive. 
7. The due date of each job is known. 
8. Sequence-dependent setup time is not considered. 
9. A job is completed when the last stage of the job is 

finished. 

3.  ALGORITHMS 

To utilize the property of dividable jobs, mixed 
heuristic algorithms consisting of two phases are devel-
oped. The first phase determines how jobs are divided 
and a set of sub-jobs is established. A transition process 
converts this set of sub-jobs into the initial setting of the 
second phase which then searches for best sub-job as-
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signments and sequences on the given set of identical 
parallel machines. The objective value of the schedule 
obtained in phase 2 is fed back to phase 1 as a reference 
for modifying how jobs are to be divided. The two 
phases are executed iteratively until termination condi-
tions are met. Figure 2 illustrates the procedure of the 
proposed heuristic algorithms. 

 

Yes

No

No

Yes

Initialization

Phase 1

Phase 2 terminates?

Phase 1 terminates?

End

Transition

Phase 2

 
Figure 2. Flow chart of the two-phase algorithm. 
 
Simulated annealing algorithm (SA) and genetic 

algorithm (GA) are applied in the development of the 
heuristic algorithms. Both SA and GA can be utilized 
for the two phases of the algorithm. As a result, there are 
four possible combinations. For example, the algorithm 
denoted as SA-SA means both phase 1 and phase 2 of 
the algorithm are developed using SA. In the initializa-
tion step, an initial state for phase 1 of the algorithm 
(designed based on SA) representing a set of sub-jobs 
established from the group of jobs to be scheduled is 
generated and an assignment and sequences of this set of 
sub-jobs are determined based on some simple decision 
rules. The resulting total tardiness is assigned as the 
fitness value of this state. Next, phase 1 generates a new 
state, Snew (a new set of sub-jobs). Through transition 
process, an initial state (assignment and sequences of 
Snew) is established for phase 2 algorithm (developed 
based on SA). The phase 2 algorithm then search for 
optimal assignment and sequences of Snew. After phase 2, 
algorithm stops according to a pre-determined termina-
tion condition. Total tardiness of the obtained optimal 
(or sub-optimal) solution is assigned as the fitness value 
of Snew. Phase 1 algorithm’s termination conditions are 

then examined. If conditions are met, the whole heuris-
tic algorithm stops. Otherwise, go to phase 1 algorithm 
and generate a new state. 

The algorithm with both phases designed using GA 
is denoted as GA-GA. In algorithm SA-GA, SA is ap-
plied to phase 1 and GA is applied to phase 2. Finally, 
phase 1 algorithm is designed using GA and phase 2 is 
designed using SA in algorithm GA-SA.  

The pseudo code of the GA-SA algorithm is shown 
in Figure 3. The detailed design of the GA and SA algo-
rithms can be referred to Tsai and Wu (2006) and Tsai 
and Tseng (2007). 

 
01
02
03
04
05
06

Begin 
Initialize population 
Repeat until (termination condition(GA) = true) do 

Select parents 
Generate offspring population 
For each individual in offspring population 

07
08
09
10
11
12
13
14
15

Generate initial solution /* phase 2 begins */ 
Set initial temperature 
Repeat until (termination condition(SA) = true) do 

Generate a new solution 
Let ΔE = fitness(new)-fitness(best-so-far) 
If ΔE < 0, then best-so-far solution = new solution. 
If ΔE ≥ 0, then accept new solution with probability AP. 
Update temperature. 

EndRepeat /* phase 2 ends */ 
16
17
18

EndFor 
EndRepeat 

End 

Figure 3. Pseudo code of GA-SA algorithm. 
 
In this algorithm, GA algorithm is applied to solve 

the job splitting problem (phase 1). A solution in this 
phase represents a set of sub-jobs. Its fitness value is the 
total tardiness of the considered parallel machine prob-
lem with this set of sub-jobs and is determined by using 
SA algorithm. After a new set of solutions (offspring 
population) is generated by GA through crossover and 
mutation in phase 1 (line 5 in the pseudo code), the pro-
cedure enters phase 2 where SA (line 7 to line 15) is 
applied to determine the fitness value of each individual 
in the offspring population. In phase 2, a solution repre-
sents the assignment of the sub-jobs (given by an indi-
vidual from phase 1) to the machines and the job se-
quence on each machine. The outcome (the fitness value 
of each individual) is fed back to GA in phase 1 for gen-
erating the next offspring population. This procedure 
repeats until the termination condition of GA is met and 
the solution (a set of sub-jobs, how they are assigned to 
machines and job sequence on each machine) with the 
best total tardiness is obtained. 

Figure 4 shows the pseudo code of SA-GA algo-
rithm. In phase 1, SA is used to find the best set of sub-
jobs. When a new solution is generated in this phase, 
GA in phase 2 is called for determining its fitness value. 
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The output of GA is then provided to SA for generation 
of the solution. 

 

 

01 
02 
03 
04 
05 
06 

Begin 
Generate initial solution 
Set initial temperature 
Repeat until (termination condition(SA) = true) do 

Generate a new solution 
Initialize population 

 

07 
08 
09 
10 
11 

Repeat until (termination condition(GA) = true) do 
Calculate fitness values 
Select parents 
Generate offspring population 

EndRepeat 

 

12 
13 
14 
15 
16 
17 

Let ΔE = fitness(new)-fitness(best-so-far) 
If ΔE < 0, then best-so-far solution = new solution. 
If ΔE ≥ 0, then accept new solution with probability AP. 
Update temperature. 

EndRepeat 
End 

Figure 4. Pseudo code of SA-GA algorithm. 
 
The other two-phase algorithms, SA-SA and GA-

GA, are developed with the same concept. 

4.  TEST INSTANCES 

Test instances are created for the purpose of evalu-
ating the performance of the proposed heuristic algo-
rithms. Instances may have different degrees of com-
plexity due to how jobs are allowed to be divided. Gen-
erally speaking, instances with more jobs, more jobs 
consisting of larger number of stages or larger total 
number of job stages are more complex and require 
more efforts to find better solutions. To rank the com-
plexity of test instances, a complexity index is devel-
oped. Let N denote the number of jobs and Ni denote the 
number of jobs with i stages. The maximum number of 
stages of a job in the considered group of jobs is denoted 
by Smax. Furthermore, define 
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The degree of instance complexity is defined as 

follows. 
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Clearly, 0 < C ≤ 1 and larger C values represent 

more complex instances. In this study, instances are 
categorized into three complexity levels. It is defined 
that the complexity level of an instance is CL-1 if 0 < C 
< 1/3. If 1/3 ≤ C < 1, the complexity level is CL-2 and if 
1/3 ≤ C ≤ 1, the complexity level is CL-3. 

For example, an instance contains 100 jobs. 20 jobs 
have only one stage. 30 jobs contain 2 stages. There are 
20 jobs with 3 stages and the number of jobs with 4 
stages is 30. Thus, Smax = 4, Tmax = 24 – 1 = 8, and 

 
1(20) 2(30) 3(20) 4(30) 2.6

100
S + + +

= =    

1(20) 2(30) 4(20) 8(30) 4
100

T + + +
= =  

 
Therefore, 

 
2.6(4) 0.325
4(8)

C = =  

 
The complexity level of this instance is CL-1. 
Three groups of test instances with various num-

bers of jobs and machines are generated. Table 1 shows 
the detail settings of the three instance groups. In each 
group, 10 instances in one of the three complexity levels 
are generated. Therefore, each group contains 30 in-
stances and an overall of 90 instances are created. The 
maximum number of cut points in a job is set at 4. Proc-
essing time, cut points and due date of each job are ran-
domly generated. 

 
Table 1. Groups of test instance. 

Instance size 
 

small medium large 

Number of jobs 20 50 100 
Number of machines 3 6 15 

5.  NUMERICAL EXPERIMENT 

Four heuristic algorithms consisting of 2 phases are 
developed. Numerical experiment is conducted in order 
to evaluate their performance. For comparison, algo-
rithms that do not consider job splitting and algorithms 
with jobs divided into the most possible number of sub-
jobs are also developed. Again, SA and GA are applied 
in these single-phase algorithms. As a result, there are 
four more heuristic algorithms. The algorithm denoted 
as SA-no applies SA and does not consider any job 
splitting. Similarly, GA-no utilizes GA without any job 
splitting. The algorithms denoted as SA-all and GA-all 
use SA and GA, respectively, to schedule sub-jobs that 
can possibly be obtained.  

A total of eight heuristic algorithms are developed 
using Devcpp (Dev C++) 4.9.9.2. The numerical ex-
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periment is conducted on a computer system equipped 
with Intel Core2 Duo E8200 2.6GHz and 2GB RAM. 
The eight algorithms are applied to 90 test instances 
with various sizes and complexity levels. For each in-
stance, 30 runs are executed with each algorithm. Total 
tardiness of each obtained solution is evaluated and run 
time is recorded. 

5.1 Small-sized instances 

For small-sized instances, algorithm SA-all obtains 
the best solution that can be found in the conducted ex-
periment in every instance. Therefore, the percentage 
difference of the objective values obtained the other 
algorithms compared to the values obtained by SA-all 
are calculated and the results are listed in Table 2. Natu-
rally, the average percentage difference of SA-all under 
all complexity levels is 0%. As can be seen, GA-all 
gives very low average percentage difference (1.21%). 
By dividing jobs into the most number of allowable sub-
jobs, both SA-all and GA-all are able to explore more 
possible solutions and thus produces better solutions. 
SA-no and GA-no do not allow any job splitting and 
hence limit their search. As a result, their performance is 
the worst (8.26% and 10.53%). The four two-phase heu-
ristic algorithms provide relatively low percentage dif-
ference, ranging from 2.56% to 4.33%. It demonstrates 
the benefits of taking advantage of the job splitting. The 
result also clearly shows that the percentages increase 
with higher degrees of complexity, independent of the 
algorithms.  

 
Table 2. Average % difference(small-sized). 

 SA-all GA-all SA-no GA-no 

CL-1 0.00% 0.80% 5.36% 8.68% 
CL-2 0.00% 1.22% 8.32% 10.28%
CL-3 0.00% 1.60% 11.10% 12.61%

Average 0.00% 1.21% 8.26% 10.53%

 SA-SA GA-SA SA-GA GA-GA

CL-1 2.49% 1.21% 3.55% 3.12% 
CL-2 3.08% 2.81% 3.98% 3.71% 
CL-3 4.95% 3.67% 5.46% 4.59% 

Average 3.50% 2.56% 4.33% 3.81% 
 
Table 3 shows the average CPU times (in seconds) 

of each heuristic algorithm. SA-all and GA-all require a 
lot greater CUP time for searching solutions (8.85 and 
8.39 seconds on average, respectively) because they 
explore larger search space. SA-no and GA-no, on the 
other hand, take less than 1 second of CPU time (0.18 
and 0.51 seconds on average, respectively). The four 
two-phase algorithms also show great search efficiency. 
SA-SA takes an average of only 1.35 seconds of CUP 
time and GA-GA needs less than 4 seconds on average. 

Table 3. Average CPU time(small-sized). 

 SA-all GA-all SA-no GA-no 
CL-1 6.1 5.63 0.18 0.51 
CL-2 9.06 8.6 0.18 0.51 
CL-3 11.4 10.94 0.18 0.51 

Average 8.85 8.39 0.18 0.51 
 SA-SA GA-SA SA-GA GA-GA

CL-1 1.09 1.73 2.25 2.66 
CL-2 1.453 2.44 2.98 3.75 
CL-3 1.5 2.82 3.16 4.43 

Average 1.35 2.33 2.80 3.61 
 
Not surprisingly, it takes every heuristic algorithms 

longer time to solve instances with higher complexity 
levels. Noticeably, SA-all and GA-all are more sensitive 
to the complexity levels of instances as their average 
CPU times go up faster when complexity level increases. 

Table 4 lists the average of the standard deviation 
(s.t.d.) of the objective values from the 30 runs for an 
instance using each algorithm on the three groups of 
instances with different complexity levels. The two al-
gorithms, SA-no and GA-no, solve problems without the 
option of job splitting and their average standard devia-
tions are considerably lower. It is due to the effective 
numbers of jobs to be scheduled are smaller in their 
cases. Over all, two-phase algorithms have higher aver-
age standard deviations. In addition, average standard 
deviation increases in the degree of complexity. With 
more complex instances, there are more jobs and ma-
chines to be considered. Consequently, the differences 
between the results of the 30 runs become greater. 

 
Table 4. Average standard deviation(small-sized). 

 SA-all GA-all SA-no GA-no 

CL-1 5.81 7.24 2.26 3.32 
CL-2 5.96 7.63 2.47 3.49 
CL-3 10.43 12.26 5.91 6.60 

Average 7.40 9.04 3.55 4.47 

 SA-SA GA-SA SA-GA GA-GA

CL-1 8.08 5.49 9.70 7.78 
CL-2 8.78 5.83 9.97 7.83 
CL-3 18.69 15.17 18.97 17.64 

Average 11.85 8.83 12.88 11.08 
 
Next, the performance of the four two-phase heu-

ristic algorithms is compared. The average percentage 
difference, average CPU time and average standard de-
viation of each algorithm are summarized in Table 5. In 
terms of solution quality and stability, algorithm GA-SA 
has the best performance among the four algorithms as it 
has the lowest average percentage difference (2.56%) 
and the lowest average standard deviation (8.83). It also 
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has a relatively low average CPU time (2.33 seconds). 
The algorithm with the lowest average CPU time is SA-
SA. However, it also has the worst solution quality. 

 
Table 5. Comparison of two-phase algorithms(small-sized). 

 SA-SA GA-SA SA-GA GA-GA
% difference 3.50% 2.56% 4.33% 3.81% 

CPU time 1.35 2.33 2.80 3.61 
s.t.d. 11.85 8.83 12.88 11.08 
 
The superiority of algorithm GA-SA in solution 

quality can also be observed by comparing the numbers 
of instances where the algorithm obtains the best known 
solutions in the conducted experiment. The numbers are 
listed in Table 6. Among the 90 tested small-sized in-
stances, GA-SA is able to find the best solution in 19 of 
them. It is far better than the other three algorithms, 
each of who finds the best known solution in no more 
than 5 instances. 

Lastly, comparison is made on whether SA or GA 
is more suitable for phase 1 and phase 2 in a two-phase 
algorithm. Average percentage differences are listed in 
Table 7. SA-SA and GA-SA, both with SA in phase 2, 
are firstly compared. It can be seen that GA-SA per-
forms better with an average percentage difference of 
2.56%, compared to 3.50% of SA-SA. It indicates that 
GA is a better choice to be used for finding proper job 
splitting in phase 1 with respect to SA. Similarly, the 
comparison of SA-GA and GA-GA where both having 
GA in phase 2 shows that GA is more suitable for phase 
1, as GA-GA has lower percentage difference (3.81% 
over 4.33%). Similarly, by comparing SA-SA and SA-
GA, as well as GA-SA and GA-GA, one can find that 
SA is the better method for phase 2. 

 
Table 6. Number of instances where best solutions are 

obtained(small-sized). 

 SA-SA GA-SA SA-GA GA-GA
CL-1 2 8 0 0 
CL-2 2 6 0 2 
CL-3 1 5 2 2 
Total 5 19 2 4 

 
Table 7. Comparison of SA and GA(small-sized). 

Method to be compared Phase to be 
compared Phase fixed SA GA 

SA-SA GA-SA Phase 2: SA 
3.50% 2.56% 
SA-GA GA-GA 

Phase 1 
Phase 2: GA 

4.33% 3.81% 
SA-SA SA-GA Phase 1: SA 
3.50% 4.33% 
GA-SA GA-GA Phase 2 

Phase 1: GA 
2.56% 3.81% 

5.2 Medium-sized instances 

The obtained experimental results on the group of 
30 medium-sized instances are analyzed. Average per-
centage differences of the obtained total tardiness with 
respect to the best total tardiness found in this experi-
ment are summarized in Table 8. Again, SA-all has 0 
average percentage differences in every complexity 
level. It indicates that the solutions provided by this al-
gorithm is the best known solution in this experiment in 
each instance. All the other seven algorithms have 
greater percentage differences compared to those in the 
experiment with small-sized instances. Solution quali-
ties of the two no-job-splitting algorithms, SA-no and 
GA-no, are again the worst. GA-all has the second low-
est average percentage difference of 3.57%. It is fol-
lowed by GA-SA with 4.44%. 

However, it is reversed when comparing the algo-
rithm performance in terms of search efficiency. From 
the average CUP time illustrated in Table 9, it can been 
observed that SA-all and GA-all have greater average 
CUP times (over 1 minute and 1.5 minutes, respec-
tively). In contrast, SA-no takes only 0.38 second on 
average to solve a medium-sized instance and GA-no 
takes about 1 second. Comparatively, the four proposed 
two-phase heuristic algorithms are more balanced be-
tween solution quality and efficiency. Among them, SA-
SA has the shortest average CUP time, followed by GA-
SA. Over all, it takes longer to solve medium-sized in-
stances.  

 
Table 8. Average % difference(medium-sized). 

 SA-all GA-all SA-no GA-no 
CL-1 0.00% 2.77% 11.25% 14.05%
CL-2 0.00% 3.51% 13.45% 15.14%
CL-3 0.00% 4.42% 13.72% 16.25%

Average 0.00% 3.57% 12.81% 15.15%
 SA-SA GA-SA SA-GA GA-GA

CL-1 6.75% 2.78% 2.50% 3.49% 
CL-2 9.15% 4.15% 7.22% 7.12% 
CL-3 10.52% 6.38% 9.57% 8.26% 

Average 8.80% 4.44% 6.43% 6.29% 
 

Table 9. Average CPU time(medium-sized). 

 SA-all GA-all SA-no GA-no 
CL-1 40.53 60.25 0.38 1.03 
CL-2 60.72 90.38 0.38 1.03 
CL-3 80.43 120.03 0.38 1.03 

Average 60.56 90.22 0.38 1.03 
 SA-SA GA-SA SA-GA GA-GA

CL-1 8.75 13.25 18.47 21.62 
CL-2 12.00 18.62 25.75 32.00 
CL-3 12.38 21.00 26.29 37.20 

Average 11.04 17.62 23.50 30.27 
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Table 10 compares the four proposed two-phase 
heuristic algorithms in average percentage difference, 
average CPU time and average standard deviation. SA-
SA has the shortest average CPU time of only 11.04 
seconds. However, its 8.80% average difference is the 
highest. Again, GA-SA has the best solution quality and 
stability, and the second shortest average CPU time 
among the four algorithms. 

Solution quality of the algorithms can also be com-
pared based on the number of instances where the algo-
rithm obtains the best solutions found in the experiment. 
The numbers are shown in Table 11. The outcome 
shows that SA-SA fails to find best solution in any of 
the 90 medium-sized instances. In contrast, GA-SA ob-
tains the best solution in 16 instances. 

5.3 Large-sized instances 

Experiment on large-sized instances is also con-
ducted. Table 12 lists the average percentage differences 
of the obtained total tardiness with respect to the best 
total tardiness found in this experiment in the group of 
large-sized instances. Results similar to those obtained 
in the groups of small-sized and medium-sized instances 
are found. SA-all obtains the best known solution in 
every instance. Noticeably, the average percentage dif-
ference becomes larger in general with large-sized in-
stances. 

As expected, the CPU times required to solve 
large-sized instances become larger, as shown in Table 
13. It takes an average of 460 seconds for SA-all to 
solve instances with the highest complexity level and 
almost 10 minutes for GA-all to do the same. In the 
mean time, the four two-phase algorithms also need 
larger CUP times but are a lot lower compared to SA-all 
and GA-all. It clearly demonstrates that when the num-
bers of jobs and machines are considerable large, two-
phase algorithms are the more practical choices in bal-
ancing solution quality and efficiency. Surprisingly, SA-
no still needs an average CPU time of no more than 1 
second and GA-no requires no longer than 2 seconds on 
average. 

As shown in Table 14 and Table 15, SA-SA does 
not perform well in terms of average percentage differ-
ence and number of instances where the best known 
solutions are found. Even though it has the smallest av-
erage CPU time of less than 1 minute, the solution qual-
ity is the worst among the four two-phase algorithms. 
Once again, GA-SA performs well in solution quality, 
stability and search efficiency. 

 
Table 10. Comparison of two-phase algorithms 

(medium-sized). 

 SA-SA GA-SA SA-GA GA-GA
% difference 8.80% 4.44% 6.43% 6.29%

CPU time 11.04 17.62 23.50 30.27 
s.t.d. 11.60 9.07 12.49 10.88 

Table 11. Number of instances where best solutions are 
obtained (medium-sized). 

 SA-SA GA-SA SA-GA GA-GA

CL-1 0 3 5 2 
CL-2 0 5 3 2 
CL-3 0 8 0 2 
Total 0 16 8 6 

 
Table 12. Average % difference(large-sized). 

 SA-all GA-all SA-no GA-no 

CL-1 0.00% 3.79% 14.88% 17.58% 
CL-2 0.00% 4.53% 17.64% 20.46% 
CL-3 0.00% 6.39% 18.31% 21.41% 

Average 0.00% 4.90% 16.94% 19.81% 
 SA-SA GA-SA SA-GA GA-GA

CL-1 7.26% 4.68% 4.50% 4.26% 
CL-2 10.87% 7.07% 8.36% 8.09% 
CL-3 13.57% 8.35% 10.66% 9.45% 

Average 10.57% 6.70% 7.84% 7.26% 
 

Table 13. Average CPU time(large-sized). 

 SA-all GA-all SA-no GA-no 
CL-1 218.5 273.0 0.65 1.78 
CL-2 305.0 382.5 0.65 1.78 
CL-3 460.5 594.0 0.65 1.78 

Average 328.0 416.5 0.65 1.78 
 SA-SA GA-SA SA-GA GA-GA

CL-1 46.24 68.72 93.76 108.72 
CL-2 61.28 95.64 130.60 156.24 
CL-3 67.52 120.60 141.84 186.84 

Average 58.35 94.99 122.07 150.60 
 

Table 14. Comparison of two-phase algorithms(large-sized). 

 SA-SA GA-SA SA-GA GA-GA

% difference 10.57% 6.70% 7.84% 7.26% 
CPU time 58.35 94.99 122.07 150.60

s.t.d. 11.65 9.03 12.82 10.98 
 

Table 15. Number of instances where best solutions are 
obtained(large-sized). 

 SA-SA GA-SA SA-GA GA-GA

CL-1 0 2 5 3 
CL-2 0 7 1 2 
CL-3 0 7 0 3 
Total 0 16 6 8 
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5.4 Comparison of two-phase algorithms 

Next, the overall performance of the four two-
phase algorithms is compared. Figure 5 illustrates aver-
age percentage difference of each heuristic algorithm in 
the three instance groups. It clearly shows that GA-SA 
has the best performance among the four algorithms. 
SA-SA provides the solutions with the worst quality for 
larger instances. In addition, average percentage differ-
ences go up as instances become larger no matter what 
algorithm is used. The number of instances where the 
best solution is obtained is summed up in Table 16. Note 
that there are 30 instances in each size. As shown in the 
table, GA-SA has overwhelming better performance 
over the other three algorithms in all instance sizes. It is 
able to obtain the best solution known in this study in 
over 56% of the tested instances. In contrast, the other 
three algorithms perform poorly under this category. 
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difference. 
 

Table 16. Number of instances where best solutions are 
obtained. 

Instance size SA-SA GA-SA SA-GA GA-GA
Small 5 19 2 4 

Medium 0 16 8 6 

Large 0 16 6 8 

Total 5 51 16 18 
 

Figure 6 provides the comparison in terms of aver-
age CPU time. SA-SA is most efficient in obtaining 
solutions and GA-SA has the second shortest average 
CPU time. As can be expected, it takes longer CPU time 
to solve larger instances regardless the algorithm used. 
Notice that CPU time increases drastically for obtaining 
solutions in large-sized instances as the number of jobs 
becomes 100 and the number of machines becomes 15. 
Comparison is also made in terms of the average of the 
standard deviation of the objective values from the 30 
runs for an instance. It is shown in Figure 7. With the 
relatively smaller average standard deviation, GA-SA is 

superior in terms of robustness over the other three algo-
rithms. Furthermore, the average standard deviation is 
very close in the three instance groups under either algo-
rithm. 
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6.  CONCLUSION 

This paper studied parallel machine scheduling 
problems with options to divide jobs into multiple sub-
jobs with pre-determined cut points. To utilize the char-
acteristic of dividable jobs for finding better solutions 
and keep search time under control, a two-phase heuris-
tic algorithm design is proposed. Simulated annealing 
and genetic algorithms are applied to the two algorithm 
phases. Accordingly, four heuristic algorithms were 
developed. Numerical experiment with test instances of 
various sizes and complexity levels were conducted. 
The analytical results led to the following conclusion. 

1. Better solutions can be obtained by properly split-
ting jobs. Scheduling flexibility is increased if 
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jobs are divided into smaller sub-jobs. It produces 
more and potentially better solutions. 

2. Dividing jobs into the greatest number of sub-jobs 
possible increases search time dramatically. It be-
comes considerably worse with greater number of 
jobs. The proposed two-phase algorithms can keep 
a balance between solution quality and search ef-
ficiency. They are suitable and more practical for 
larger-sized instances. 

3. Both SA and GA can be applied for the two pha-
ses of the proposed algorithm. GA performs better 
in phase 1 as it is able to explore more effectively 
possible combination of job splitting. SA, on the 
other hand, is more efficient in phase 2 when de-
termine job assignment and sequences, given a 
group of sub-jobs. As shown, algorithm GA-SA 
had the best overall performance by jointly con-
sidering solution quality, efficiency and robust-
ness. 

REFERENCES 

Anagnostopoulos, G. C. and Rabadi, G. (2002). A simu-
lated annealing algorithm for the unrelated parallel 
machine scheduling problem, Proceedings of the 
5th Biannual World Automation Congress, 14, 115-
120.  

Armentano, V. A. and de França Filho, M. F. (2007), Mi-
nimizing total tardiness in parallel machine sched-
uling with setup times: An adaptive memory–based 
GRASP approach, European Journal of Opera-
tional Research, 183(1), 100-114. 

Azizoglu, M. and Kirca, O. (1998), Tardiness minimiza-
tion on parallel machines, International Journal of 
Production Economics, 55(2), 163-168. 

Azizoglu, M. and Kirca, O. (1999), On the minimization 
of total weighted flow time with identical and uni-
form parallel machines, European Journal of Op-
erational Research, 113(1), 91-100. 

Bilge, U., Kıraç, F., Kurtulan, M., and Pekgün, P. (2004), 
A tabu search algorithm for parallel machine total 
tardiness problem, Computers and Operations Re-
search, 31(3), 397-414. 

Cheng, R., Gen, M., and Tozawa, T. (1995), Minmax ear-
liness/tardiness scheduling in identical parallel ma-
chine system using genetic algorithms, Computers 
and Industrial Engineering, 29(1-4), 397-414. 

Dessouky, M. M., Dessouky, M. I., and Verma, S. K. 
(1998), Flowshop scheduling with identical jobs and 
uniform parallel machines, European Journal of 
Operational Research, 109(3), 620-631. 

Guo, Y., Lim, A., Rodrigues, B., and Liang, Y. (2007), 
Minimizing the makespan for unrelated parallel 
machines, International Journal on Artificial Intel-
ligence Tools, 16(3), 309-415. 

Kim, D., Kim, K., Jang, W., and Chen, F. F. (2002), 
Unrelated parallel machine scheduling with setup 
times using simulated annealing, Robotics and Com-
puter-Integrated Manufacturing, 18(3-4), 223-231. 

Kim, D., Na, D., and Chen, F. F. (2003), Unrelated paral-
lel machine scheduling with setup times and a total 
weighted tardiness objective, Robotics and Com-
puter–Integrated Manufacturing, 19(1-2), 173-181. 

Kim, D., Na, D., Jang, W., and Chen, F. F. (2006), 
Simulated annealing and genetic algorithm for un-
related parallel machine scheduling considering set- 
up times, International Journal of Computer Appli-
cations in Technology, 26(1-2), 28-36.  

Liao, C., and Lin, C. (2003), Makespan minimization for 
two uniform parallel machines, International Jour-
nal of Production Economics, 84(2), 205-213. 

Low, C. (2005), Simulated annealing heuristic for flow 
shop scheduling problems with unrelated parallel 
machines, Computers and Operations Research, 32 
(8), 2013-2025. 

Mason, A. J. (1992), Genetic algorithm and scheduling 
problems, Ph.D. thesis, Department of Management 
Sciences, University of Cambridge, UK. 

Min, L. and Cheng, W. (1999), A genetic algorithm for 
minimizing the makespan in the case of scheduling 
identical parallel machines, Artificial Intelligence 
in Engineering, 13(4), 399-403. 

Piersma, N. and Van Dijk, W. (1996), A local search 
heuristic for unrelated parallel machine scheduling 
with efficient neighborhood search, Mathematical 
and Computer Modelling, 24(9), 11-19. 

Rubin, P. A. and Ragatz, G. L. (1994), Scheduling in a 
sequence dependent setup environment with genetic 
search, Computers and Operations Research, 22(1), 
85-99. 

Tan, K., Narasimhan, R., Rubin, P. A., and Ragatz, G. L. 
(2000), A comparison of four methods for mini-
mizing total tardiness on a single processor with se-
quence dependent setup times, Omega, 28(3), 313-
326. 

Tsai, C.-Y. and Tseng, C.-J. (2007), Unrelated parallel-
machines scheduling with constrained resources 
and sequence-dependent setup time, Proceedings of 
the 37th International Conference on Computers 
and Industrial Engineering, Alexandria, Egypt, 20-
23. 

Tsai, C.-Y. and Wu, S.-N. (2006), Application of simu-
lated annealing algorithm on the unrelated parallel 
machine scheduling problem with limited resources, 
Proceedings of the 36th International Conference 
on Computers and Industrial Engineering, Taipei, 
Taiwan, 20-26. 

Yalaoui, F., and Chu, C. (2002), Parallel machine schedul-
ing to minimize total tardiness, International Journal 
of Production Economics, 76(3), 265-279. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


