
IEMS Vol. 10, No. 1, pp. 15-23, March 2011.

Heuristic Algorithms for Parallel Machine Scheduling
Problems with Dividable Jobs

Chi-Yang Tsai†
Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan

Tel: +886-3-463-8800, E-mail: iecytsai@satyrun.yzu.edu.tw

You-Ren Chen
Department of Industrial Engineering and Management

Yuan Ze University, Taoyuan, Taiwan

Received, January 18, 2011; Revised, February 19, 2011; Accepted, February 21, 2011

Abstract. This research considers scheduling problems with jobs which can be divided into sub-jobs and do not
required to be processed immediately following one another. Heuristic algorithms considering how to divide jobs
are proposed in an attempt to find near-optimal solutions within reasonable run time. The algorithms contain two
phases which are executed recursively. Phase 1 of the algorithm determines how jobs should be divided while
phase 2 solves the scheduling problem given the sub-jobs established in phase 1. Simulated annealing and
genetic algorithms are applied for the two phases and four heuristic algorithms are established. Numerical
experiment is conducted to determine the best parameter values for the heuristic algorithms. Examples with
different sizes and levels of complexity are generated. Performance of the proposed algorithms is evaluated. It is
shown that the proposed algorithms are able to efficiently and effectively solve the considered problems.

Keywords: Parallel Machine Scheduling, Dividable Jobs, Simulated Annealing, Genetic Algorithm

1. INTRODUCTION

Parallel machine scheduling problems are com-
monly seen in practice. A group of jobs are to be assign-
ned to a group of machines and the processing sequen-
ces of jobs on each machine are determined as well. In
many cases, a job contains several stages that are to be
processed in sequence. Such a job can be divided into
several smaller sub-jobs with each stage representing a
sub-job. Processing of sub-jobs does not have to be in an
immediate sequence. They do not even have to be proc-
essed on the same machine. Examples of dividable jobs
can be found in automotive part processing. The manu-
facturing process of certain automotive parts includes
spray painting. Different parts require various numbers
of layers of paint. The layers of paint on one part have to
be sprayed on in a specific sequence but the operations
do not have to be done with one immediately following
another. Therefore, one can work on a part by spraying
on all the necessary layers of paint and then move on to
another part. Or one can work on a particular layer of
paint (a particular color, for example) to all the parts that
require it, and then switch to work on another layer of
paint.

Apparently, allowing job splitting provides more
options in setting up job schedules and possibly finding
better solutions. However, dividing jobs into sub-jobs
implies increasing numbers of jobs (sub-jobs) to be sche-
duled and needs greater effort to find better job sched-
ules. Consequently, splitting jobs into the most number
of sub-jobs allowed is not necessary the best option due
to long search time for finding better solutions. Ques-
tions arise that how to determine proper ways to divide
jobs to improve solution quality, and maintain search
effort for better solutions within acceptable range at the
same time. The goal of this study is to develop heuristic
algorithms by applying simulated annealing and genetic
algorithms for effectively and efficiently solving the pa-
rallel machine scheduling problem with dividable jobs
to minimize total tardiness.

There are many studies on parallel machine sched-
uling problems, including Azizoglu and Kirca (1998),
Dessouky et al. (1998), Azizoglu and Kirca (1999), Yala-
oui and Chu (2002), Bilge et al. (2004), and Armentano
and de França Filho (2007). Tan et al. (2000) considered
sequence-dependent setup time and evaluated the perfor-
mance of several technique, including branch-and-bound
method, genetic algorithm and simulated annealing al-

† : Corresponding Author

16 Chi-Yang Tsai·You-Ren Chen

gorithm. Liao and Lin (2003) studied makespan minimi-
zation for two uniform parallel machines and compared
two methods, LPT and MULTIFIT.

Several studies utilized simulated annealing algo-
rithm on parallel machine scheduling problems, includ-
ing Piersma and Dijk (1996), Anagnostopoulos and Ra-
badi (2002), Kim et al. (2002), Kim et al. (2003), and
Low (2005). Kim et al. (2006) approached unrelated pa-
rallel machine scheduling problems with sequence-de-
pendent setup time using a number of heuristic method,
including simulated annealing algorithm. Guo et al. (2007)
applied simulated annealing and tabu search to unrelated
parallel machine scheduling problems with an objective
of minimizing makespan. Genetic algorithm is another
common heuristic algorithm applied to machine sched-
uling problems, such as Mason (1992), Cheng et al. (1995),
Rubin and Ragatz (1995), Min and Cheng (1999) and
Tan et al. (2000).

The rest of the paper is organized as follows. The
next section describes the settings on the considered
dividable jobs and scheduling problems. Section 3 pre-
sents the proposed two-phase heuristic algorithm and
how it is designed utilizing simulated annealing algo-
rithm and genetic algorithm. Section 4 introduces an
index to evaluate the complexity level of test instances
and generation of test instances. The conducted numeri-
cal experiment and analytical results are presented in
Section 5. This paper concludes in Section 6.

2. PROBLEM DECRIPTION

This paper considers the problem of scheduling di-
vidable jobs on identical parallel machine with an objec-
tive to minimize total tardiness. It is assumed that jobs
can be divided into sub-jobs. Sub-jobs divided from the
same job have to be processed in a specific sequence but
not necessary immediately follow one another. Taking a
three-stage job as an example, the process of job A con-
tains three stages, A1, A2 and A3, or equivalently, there
are two cut points. Stage A1 has to be finished before
stage A2 can be processed. Likewise, stage A3 can only
be processed after stage A2 is completed. However, the
processing of stage A2 does not have to begin right after
the completion of stage A1. Similarly, stage A3 can be
assigned to another machine after stage A2 is finished.

Figure 1 shows the four possible settings of proc-
essing job A. The three stages can be processed in se-
quence with one stage immediately following another,
as illustrated by setting 1. They can also be processed
separately, even on different machines, as shown by
setting 2. In this case, job A is divided into three sub-
jobs, each containing one stage. In the third setting,
stage A1 and stage A2 form a sub-job and are processed
in immediate sequence. Stage A3 is treated as a sub-job
and can be processed later. In the last setting, there are
also two sub-jobs. Stage A2 and stage A3 form a sub-job
which can be processed after the sub-job consisting of

stage A1 is done. Sub-jobs from the same job cannot be
processed at the same time.

Splitting jobs into smaller sub-jobs increases flexi-
bility of job scheduling, thus better job schedules can be
found. However, it also increases the number of jobs to
be scheduled and more effort is needed to search for
better solutions. For example, a group of 10 jobs are to
be scheduled for process. Each job contains 3 stages and
can be divided in the way as illustrated in Figure 1. If
every job is divided into 3 sub-jobs, the effective num-
ber of jobs to be scheduled increases from 10 to 30. Ef-
fort on searching for optimal or near-optimal solutions
rises exponentially as the number of jobs increases.
Granted, chances to find the optimal solution are the
highest if jobs are divided into as many sub-jobs as pos-
sible. However, it is impractical if there too many jobs
to be scheduled.

A1 – A2 – A31

2

3

4A1 A2 A3

A1 – A2 A3

A2 – A3A1
Figure 1. Possible settings of processing a 3-stage job.

The aim of this study is to utilize the characteristic

of dividable jobs and develop methods to properly split
jobs to increase scheduling flexibility, leading to better
solutions, and control the search effort within reasonable
range at the same time. For this purpose, heuristic algo-
rithms are developed to find a balance between solution
quality and search efficiency.

The following assumptions are made in this study.

1. The numbers of jobs and machines are known and
fixed.

2. Available cut points of each job are known and
fixed.

3. The processing time of each stage of a job is
known.

4. The processing time of a sub-job is the sum of the
processing times of the job stages in the sub-job.

5. A machine can only process one job (sub-job) at a
time.

6. Job (sub-job) processing is non-preemptive.
7. The due date of each job is known.
8. Sequence-dependent setup time is not considered.
9. A job is completed when the last stage of the job is

finished.

3. ALGORITHMS

To utilize the property of dividable jobs, mixed
heuristic algorithms consisting of two phases are devel-
oped. The first phase determines how jobs are divided
and a set of sub-jobs is established. A transition process
converts this set of sub-jobs into the initial setting of the
second phase which then searches for best sub-job as-

 Heuristic Algorithms for Parallel Machine Scheduling Problems with Dividable Jobs 17

signments and sequences on the given set of identical
parallel machines. The objective value of the schedule
obtained in phase 2 is fed back to phase 1 as a reference
for modifying how jobs are to be divided. The two
phases are executed iteratively until termination condi-
tions are met. Figure 2 illustrates the procedure of the
proposed heuristic algorithms.

Yes

No

No

Yes

Initialization

Phase 1

Phase 2 terminates?

Phase 1 terminates?

End

Transition

Phase 2

Figure 2. Flow chart of the two-phase algorithm.

Simulated annealing algorithm (SA) and genetic

algorithm (GA) are applied in the development of the
heuristic algorithms. Both SA and GA can be utilized
for the two phases of the algorithm. As a result, there are
four possible combinations. For example, the algorithm
denoted as SA-SA means both phase 1 and phase 2 of
the algorithm are developed using SA. In the initializa-
tion step, an initial state for phase 1 of the algorithm
(designed based on SA) representing a set of sub-jobs
established from the group of jobs to be scheduled is
generated and an assignment and sequences of this set of
sub-jobs are determined based on some simple decision
rules. The resulting total tardiness is assigned as the
fitness value of this state. Next, phase 1 generates a new
state, Snew (a new set of sub-jobs). Through transition
process, an initial state (assignment and sequences of
Snew) is established for phase 2 algorithm (developed
based on SA). The phase 2 algorithm then search for
optimal assignment and sequences of Snew. After phase 2,
algorithm stops according to a pre-determined termina-
tion condition. Total tardiness of the obtained optimal
(or sub-optimal) solution is assigned as the fitness value
of Snew. Phase 1 algorithm’s termination conditions are

then examined. If conditions are met, the whole heuris-
tic algorithm stops. Otherwise, go to phase 1 algorithm
and generate a new state.

The algorithm with both phases designed using GA
is denoted as GA-GA. In algorithm SA-GA, SA is ap-
plied to phase 1 and GA is applied to phase 2. Finally,
phase 1 algorithm is designed using GA and phase 2 is
designed using SA in algorithm GA-SA.

The pseudo code of the GA-SA algorithm is shown
in Figure 3. The detailed design of the GA and SA algo-
rithms can be referred to Tsai and Wu (2006) and Tsai
and Tseng (2007).

01
02
03
04
05
06

Begin
Initialize population
Repeat until (termination condition(GA) = true) do

Select parents
Generate offspring population
For each individual in offspring population

07
08
09
10
11
12
13
14
15

Generate initial solution /* phase 2 begins */
Set initial temperature
Repeat until (termination condition(SA) = true) do

Generate a new solution
Let ΔE = fitness(new)-fitness(best-so-far)
If ΔE < 0, then best-so-far solution = new solution.
If ΔE ≥ 0, then accept new solution with probability AP.
Update temperature.

EndRepeat /* phase 2 ends */
16
17
18

EndFor
EndRepeat

End

Figure 3. Pseudo code of GA-SA algorithm.

In this algorithm, GA algorithm is applied to solve

the job splitting problem (phase 1). A solution in this
phase represents a set of sub-jobs. Its fitness value is the
total tardiness of the considered parallel machine prob-
lem with this set of sub-jobs and is determined by using
SA algorithm. After a new set of solutions (offspring
population) is generated by GA through crossover and
mutation in phase 1 (line 5 in the pseudo code), the pro-
cedure enters phase 2 where SA (line 7 to line 15) is
applied to determine the fitness value of each individual
in the offspring population. In phase 2, a solution repre-
sents the assignment of the sub-jobs (given by an indi-
vidual from phase 1) to the machines and the job se-
quence on each machine. The outcome (the fitness value
of each individual) is fed back to GA in phase 1 for gen-
erating the next offspring population. This procedure
repeats until the termination condition of GA is met and
the solution (a set of sub-jobs, how they are assigned to
machines and job sequence on each machine) with the
best total tardiness is obtained.

Figure 4 shows the pseudo code of SA-GA algo-
rithm. In phase 1, SA is used to find the best set of sub-
jobs. When a new solution is generated in this phase,
GA in phase 2 is called for determining its fitness value.

18 Chi-Yang Tsai·You-Ren Chen

The output of GA is then provided to SA for generation
of the solution.

01
02
03
04
05
06

Begin
Generate initial solution
Set initial temperature
Repeat until (termination condition(SA) = true) do

Generate a new solution
Initialize population

07
08
09
10
11

Repeat until (termination condition(GA) = true) do
Calculate fitness values
Select parents
Generate offspring population

EndRepeat

12
13
14
15
16
17

Let ΔE = fitness(new)-fitness(best-so-far)
If ΔE < 0, then best-so-far solution = new solution.
If ΔE ≥ 0, then accept new solution with probability AP.
Update temperature.

EndRepeat
End

Figure 4. Pseudo code of SA-GA algorithm.

The other two-phase algorithms, SA-SA and GA-

GA, are developed with the same concept.

4. TEST INSTANCES

Test instances are created for the purpose of evalu-
ating the performance of the proposed heuristic algo-
rithms. Instances may have different degrees of com-
plexity due to how jobs are allowed to be divided. Gen-
erally speaking, instances with more jobs, more jobs
consisting of larger number of stages or larger total
number of job stages are more complex and require
more efforts to find better solutions. To rank the com-
plexity of test instances, a complexity index is devel-
oped. Let N denote the number of jobs and Ni denote the
number of jobs with i stages. The maximum number of
stages of a job in the considered group of jobs is denoted
by Smax. Furthermore, define

max

1

S

i
i

i N
S

N
=

×
=

∑
, (1)

max
1

1
2

S
i

i
i

N
T

N

−

=

×
=

∑
, (2)

max 1
max 2ST −= . (3)

The degree of instance complexity is defined as

follows.

max max

S TC
S T

×
=

×
 (4)

Clearly, 0 < C ≤ 1 and larger C values represent

more complex instances. In this study, instances are
categorized into three complexity levels. It is defined
that the complexity level of an instance is CL-1 if 0 < C
< 1/3. If 1/3 ≤ C < 1, the complexity level is CL-2 and if
1/3 ≤ C ≤ 1, the complexity level is CL-3.

For example, an instance contains 100 jobs. 20 jobs
have only one stage. 30 jobs contain 2 stages. There are
20 jobs with 3 stages and the number of jobs with 4
stages is 30. Thus, Smax = 4, Tmax = 24 – 1 = 8, and

1(20) 2(30) 3(20) 4(30) 2.6

100
S + + +

= =

1(20) 2(30) 4(20) 8(30) 4
100

T + + +
= =

Therefore,

2.6(4) 0.325
4(8)

C = =

The complexity level of this instance is CL-1.
Three groups of test instances with various num-

bers of jobs and machines are generated. Table 1 shows
the detail settings of the three instance groups. In each
group, 10 instances in one of the three complexity levels
are generated. Therefore, each group contains 30 in-
stances and an overall of 90 instances are created. The
maximum number of cut points in a job is set at 4. Proc-
essing time, cut points and due date of each job are ran-
domly generated.

Table 1. Groups of test instance.

Instance size

small medium large

Number of jobs 20 50 100
Number of machines 3 6 15

5. NUMERICAL EXPERIMENT

Four heuristic algorithms consisting of 2 phases are
developed. Numerical experiment is conducted in order
to evaluate their performance. For comparison, algo-
rithms that do not consider job splitting and algorithms
with jobs divided into the most possible number of sub-
jobs are also developed. Again, SA and GA are applied
in these single-phase algorithms. As a result, there are
four more heuristic algorithms. The algorithm denoted
as SA-no applies SA and does not consider any job
splitting. Similarly, GA-no utilizes GA without any job
splitting. The algorithms denoted as SA-all and GA-all
use SA and GA, respectively, to schedule sub-jobs that
can possibly be obtained.

A total of eight heuristic algorithms are developed
using Devcpp (Dev C++) 4.9.9.2. The numerical ex-

 Heuristic Algorithms for Parallel Machine Scheduling Problems with Dividable Jobs 19

periment is conducted on a computer system equipped
with Intel Core2 Duo E8200 2.6GHz and 2GB RAM.
The eight algorithms are applied to 90 test instances
with various sizes and complexity levels. For each in-
stance, 30 runs are executed with each algorithm. Total
tardiness of each obtained solution is evaluated and run
time is recorded.

5.1 Small-sized instances

For small-sized instances, algorithm SA-all obtains
the best solution that can be found in the conducted ex-
periment in every instance. Therefore, the percentage
difference of the objective values obtained the other
algorithms compared to the values obtained by SA-all
are calculated and the results are listed in Table 2. Natu-
rally, the average percentage difference of SA-all under
all complexity levels is 0%. As can be seen, GA-all
gives very low average percentage difference (1.21%).
By dividing jobs into the most number of allowable sub-
jobs, both SA-all and GA-all are able to explore more
possible solutions and thus produces better solutions.
SA-no and GA-no do not allow any job splitting and
hence limit their search. As a result, their performance is
the worst (8.26% and 10.53%). The four two-phase heu-
ristic algorithms provide relatively low percentage dif-
ference, ranging from 2.56% to 4.33%. It demonstrates
the benefits of taking advantage of the job splitting. The
result also clearly shows that the percentages increase
with higher degrees of complexity, independent of the
algorithms.

Table 2. Average % difference(small-sized).

 SA-all GA-all SA-no GA-no

CL-1 0.00% 0.80% 5.36% 8.68%
CL-2 0.00% 1.22% 8.32% 10.28%
CL-3 0.00% 1.60% 11.10% 12.61%

Average 0.00% 1.21% 8.26% 10.53%

 SA-SA GA-SA SA-GA GA-GA

CL-1 2.49% 1.21% 3.55% 3.12%
CL-2 3.08% 2.81% 3.98% 3.71%
CL-3 4.95% 3.67% 5.46% 4.59%

Average 3.50% 2.56% 4.33% 3.81%

Table 3 shows the average CPU times (in seconds)

of each heuristic algorithm. SA-all and GA-all require a
lot greater CUP time for searching solutions (8.85 and
8.39 seconds on average, respectively) because they
explore larger search space. SA-no and GA-no, on the
other hand, take less than 1 second of CPU time (0.18
and 0.51 seconds on average, respectively). The four
two-phase algorithms also show great search efficiency.
SA-SA takes an average of only 1.35 seconds of CUP
time and GA-GA needs less than 4 seconds on average.

Table 3. Average CPU time(small-sized).

 SA-all GA-all SA-no GA-no
CL-1 6.1 5.63 0.18 0.51
CL-2 9.06 8.6 0.18 0.51
CL-3 11.4 10.94 0.18 0.51

Average 8.85 8.39 0.18 0.51
 SA-SA GA-SA SA-GA GA-GA

CL-1 1.09 1.73 2.25 2.66
CL-2 1.453 2.44 2.98 3.75
CL-3 1.5 2.82 3.16 4.43

Average 1.35 2.33 2.80 3.61

Not surprisingly, it takes every heuristic algorithms

longer time to solve instances with higher complexity
levels. Noticeably, SA-all and GA-all are more sensitive
to the complexity levels of instances as their average
CPU times go up faster when complexity level increases.

Table 4 lists the average of the standard deviation
(s.t.d.) of the objective values from the 30 runs for an
instance using each algorithm on the three groups of
instances with different complexity levels. The two al-
gorithms, SA-no and GA-no, solve problems without the
option of job splitting and their average standard devia-
tions are considerably lower. It is due to the effective
numbers of jobs to be scheduled are smaller in their
cases. Over all, two-phase algorithms have higher aver-
age standard deviations. In addition, average standard
deviation increases in the degree of complexity. With
more complex instances, there are more jobs and ma-
chines to be considered. Consequently, the differences
between the results of the 30 runs become greater.

Table 4. Average standard deviation(small-sized).

 SA-all GA-all SA-no GA-no

CL-1 5.81 7.24 2.26 3.32
CL-2 5.96 7.63 2.47 3.49
CL-3 10.43 12.26 5.91 6.60

Average 7.40 9.04 3.55 4.47

 SA-SA GA-SA SA-GA GA-GA

CL-1 8.08 5.49 9.70 7.78
CL-2 8.78 5.83 9.97 7.83
CL-3 18.69 15.17 18.97 17.64

Average 11.85 8.83 12.88 11.08

Next, the performance of the four two-phase heu-

ristic algorithms is compared. The average percentage
difference, average CPU time and average standard de-
viation of each algorithm are summarized in Table 5. In
terms of solution quality and stability, algorithm GA-SA
has the best performance among the four algorithms as it
has the lowest average percentage difference (2.56%)
and the lowest average standard deviation (8.83). It also

20 Chi-Yang Tsai·You-Ren Chen

has a relatively low average CPU time (2.33 seconds).
The algorithm with the lowest average CPU time is SA-
SA. However, it also has the worst solution quality.

Table 5. Comparison of two-phase algorithms(small-sized).

 SA-SA GA-SA SA-GA GA-GA
% difference 3.50% 2.56% 4.33% 3.81%

CPU time 1.35 2.33 2.80 3.61
s.t.d. 11.85 8.83 12.88 11.08

The superiority of algorithm GA-SA in solution

quality can also be observed by comparing the numbers
of instances where the algorithm obtains the best known
solutions in the conducted experiment. The numbers are
listed in Table 6. Among the 90 tested small-sized in-
stances, GA-SA is able to find the best solution in 19 of
them. It is far better than the other three algorithms,
each of who finds the best known solution in no more
than 5 instances.

Lastly, comparison is made on whether SA or GA
is more suitable for phase 1 and phase 2 in a two-phase
algorithm. Average percentage differences are listed in
Table 7. SA-SA and GA-SA, both with SA in phase 2,
are firstly compared. It can be seen that GA-SA per-
forms better with an average percentage difference of
2.56%, compared to 3.50% of SA-SA. It indicates that
GA is a better choice to be used for finding proper job
splitting in phase 1 with respect to SA. Similarly, the
comparison of SA-GA and GA-GA where both having
GA in phase 2 shows that GA is more suitable for phase
1, as GA-GA has lower percentage difference (3.81%
over 4.33%). Similarly, by comparing SA-SA and SA-
GA, as well as GA-SA and GA-GA, one can find that
SA is the better method for phase 2.

Table 6. Number of instances where best solutions are

obtained(small-sized).

 SA-SA GA-SA SA-GA GA-GA
CL-1 2 8 0 0
CL-2 2 6 0 2
CL-3 1 5 2 2
Total 5 19 2 4

Table 7. Comparison of SA and GA(small-sized).

Method to be compared Phase to be
compared Phase fixed SA GA

SA-SA GA-SA Phase 2: SA
3.50% 2.56%
SA-GA GA-GA

Phase 1
Phase 2: GA

4.33% 3.81%
SA-SA SA-GA Phase 1: SA
3.50% 4.33%
GA-SA GA-GA Phase 2

Phase 1: GA
2.56% 3.81%

5.2 Medium-sized instances

The obtained experimental results on the group of
30 medium-sized instances are analyzed. Average per-
centage differences of the obtained total tardiness with
respect to the best total tardiness found in this experi-
ment are summarized in Table 8. Again, SA-all has 0
average percentage differences in every complexity
level. It indicates that the solutions provided by this al-
gorithm is the best known solution in this experiment in
each instance. All the other seven algorithms have
greater percentage differences compared to those in the
experiment with small-sized instances. Solution quali-
ties of the two no-job-splitting algorithms, SA-no and
GA-no, are again the worst. GA-all has the second low-
est average percentage difference of 3.57%. It is fol-
lowed by GA-SA with 4.44%.

However, it is reversed when comparing the algo-
rithm performance in terms of search efficiency. From
the average CUP time illustrated in Table 9, it can been
observed that SA-all and GA-all have greater average
CUP times (over 1 minute and 1.5 minutes, respec-
tively). In contrast, SA-no takes only 0.38 second on
average to solve a medium-sized instance and GA-no
takes about 1 second. Comparatively, the four proposed
two-phase heuristic algorithms are more balanced be-
tween solution quality and efficiency. Among them, SA-
SA has the shortest average CUP time, followed by GA-
SA. Over all, it takes longer to solve medium-sized in-
stances.

Table 8. Average % difference(medium-sized).

 SA-all GA-all SA-no GA-no
CL-1 0.00% 2.77% 11.25% 14.05%
CL-2 0.00% 3.51% 13.45% 15.14%
CL-3 0.00% 4.42% 13.72% 16.25%

Average 0.00% 3.57% 12.81% 15.15%
 SA-SA GA-SA SA-GA GA-GA

CL-1 6.75% 2.78% 2.50% 3.49%
CL-2 9.15% 4.15% 7.22% 7.12%
CL-3 10.52% 6.38% 9.57% 8.26%

Average 8.80% 4.44% 6.43% 6.29%

Table 9. Average CPU time(medium-sized).

 SA-all GA-all SA-no GA-no
CL-1 40.53 60.25 0.38 1.03
CL-2 60.72 90.38 0.38 1.03
CL-3 80.43 120.03 0.38 1.03

Average 60.56 90.22 0.38 1.03
 SA-SA GA-SA SA-GA GA-GA

CL-1 8.75 13.25 18.47 21.62
CL-2 12.00 18.62 25.75 32.00
CL-3 12.38 21.00 26.29 37.20

Average 11.04 17.62 23.50 30.27

 Heuristic Algorithms for Parallel Machine Scheduling Problems with Dividable Jobs 21

Table 10 compares the four proposed two-phase
heuristic algorithms in average percentage difference,
average CPU time and average standard deviation. SA-
SA has the shortest average CPU time of only 11.04
seconds. However, its 8.80% average difference is the
highest. Again, GA-SA has the best solution quality and
stability, and the second shortest average CPU time
among the four algorithms.

Solution quality of the algorithms can also be com-
pared based on the number of instances where the algo-
rithm obtains the best solutions found in the experiment.
The numbers are shown in Table 11. The outcome
shows that SA-SA fails to find best solution in any of
the 90 medium-sized instances. In contrast, GA-SA ob-
tains the best solution in 16 instances.

5.3 Large-sized instances

Experiment on large-sized instances is also con-
ducted. Table 12 lists the average percentage differences
of the obtained total tardiness with respect to the best
total tardiness found in this experiment in the group of
large-sized instances. Results similar to those obtained
in the groups of small-sized and medium-sized instances
are found. SA-all obtains the best known solution in
every instance. Noticeably, the average percentage dif-
ference becomes larger in general with large-sized in-
stances.

As expected, the CPU times required to solve
large-sized instances become larger, as shown in Table
13. It takes an average of 460 seconds for SA-all to
solve instances with the highest complexity level and
almost 10 minutes for GA-all to do the same. In the
mean time, the four two-phase algorithms also need
larger CUP times but are a lot lower compared to SA-all
and GA-all. It clearly demonstrates that when the num-
bers of jobs and machines are considerable large, two-
phase algorithms are the more practical choices in bal-
ancing solution quality and efficiency. Surprisingly, SA-
no still needs an average CPU time of no more than 1
second and GA-no requires no longer than 2 seconds on
average.

As shown in Table 14 and Table 15, SA-SA does
not perform well in terms of average percentage differ-
ence and number of instances where the best known
solutions are found. Even though it has the smallest av-
erage CPU time of less than 1 minute, the solution qual-
ity is the worst among the four two-phase algorithms.
Once again, GA-SA performs well in solution quality,
stability and search efficiency.

Table 10. Comparison of two-phase algorithms

(medium-sized).

 SA-SA GA-SA SA-GA GA-GA
% difference 8.80% 4.44% 6.43% 6.29%

CPU time 11.04 17.62 23.50 30.27
s.t.d. 11.60 9.07 12.49 10.88

Table 11. Number of instances where best solutions are
obtained (medium-sized).

 SA-SA GA-SA SA-GA GA-GA

CL-1 0 3 5 2
CL-2 0 5 3 2
CL-3 0 8 0 2
Total 0 16 8 6

Table 12. Average % difference(large-sized).

 SA-all GA-all SA-no GA-no

CL-1 0.00% 3.79% 14.88% 17.58%
CL-2 0.00% 4.53% 17.64% 20.46%
CL-3 0.00% 6.39% 18.31% 21.41%

Average 0.00% 4.90% 16.94% 19.81%
 SA-SA GA-SA SA-GA GA-GA

CL-1 7.26% 4.68% 4.50% 4.26%
CL-2 10.87% 7.07% 8.36% 8.09%
CL-3 13.57% 8.35% 10.66% 9.45%

Average 10.57% 6.70% 7.84% 7.26%

Table 13. Average CPU time(large-sized).

 SA-all GA-all SA-no GA-no
CL-1 218.5 273.0 0.65 1.78
CL-2 305.0 382.5 0.65 1.78
CL-3 460.5 594.0 0.65 1.78

Average 328.0 416.5 0.65 1.78
 SA-SA GA-SA SA-GA GA-GA

CL-1 46.24 68.72 93.76 108.72
CL-2 61.28 95.64 130.60 156.24
CL-3 67.52 120.60 141.84 186.84

Average 58.35 94.99 122.07 150.60

Table 14. Comparison of two-phase algorithms(large-sized).

 SA-SA GA-SA SA-GA GA-GA

% difference 10.57% 6.70% 7.84% 7.26%
CPU time 58.35 94.99 122.07 150.60

s.t.d. 11.65 9.03 12.82 10.98

Table 15. Number of instances where best solutions are
obtained(large-sized).

 SA-SA GA-SA SA-GA GA-GA

CL-1 0 2 5 3
CL-2 0 7 1 2
CL-3 0 7 0 3
Total 0 16 6 8

22 Chi-Yang Tsai·You-Ren Chen

5.4 Comparison of two-phase algorithms

Next, the overall performance of the four two-
phase algorithms is compared. Figure 5 illustrates aver-
age percentage difference of each heuristic algorithm in
the three instance groups. It clearly shows that GA-SA
has the best performance among the four algorithms.
SA-SA provides the solutions with the worst quality for
larger instances. In addition, average percentage differ-
ences go up as instances become larger no matter what
algorithm is used. The number of instances where the
best solution is obtained is summed up in Table 16. Note
that there are 30 instances in each size. As shown in the
table, GA-SA has overwhelming better performance
over the other three algorithms in all instance sizes. It is
able to obtain the best solution known in this study in
over 56% of the tested instances. In contrast, the other
three algorithms perform poorly under this category.

0%

2%

4%

6%

8%

10%

12%

SA -SA GA -SA SA -GA GA -GA

A
ve

ra
ge

 %
 d

iff
er

en
ce

Algorithm

Small szie Medium size Large size
Figure 5. Algorithms vs. instance sizes in average %

difference.

Table 16. Number of instances where best solutions are
obtained.

Instance size SA-SA GA-SA SA-GA GA-GA
Small 5 19 2 4

Medium 0 16 8 6

Large 0 16 6 8

Total 5 51 16 18

Figure 6 provides the comparison in terms of aver-
age CPU time. SA-SA is most efficient in obtaining
solutions and GA-SA has the second shortest average
CPU time. As can be expected, it takes longer CPU time
to solve larger instances regardless the algorithm used.
Notice that CPU time increases drastically for obtaining
solutions in large-sized instances as the number of jobs
becomes 100 and the number of machines becomes 15.
Comparison is also made in terms of the average of the
standard deviation of the objective values from the 30
runs for an instance. It is shown in Figure 7. With the
relatively smaller average standard deviation, GA-SA is

superior in terms of robustness over the other three algo-
rithms. Furthermore, the average standard deviation is
very close in the three instance groups under either algo-
rithm.

0

20

40

60

80

100

120

140

160

SA-SA GA-SA SA-GA GA-GA

A
ve

ra
ge

 C
PU

 ti
m

e

Algorithm

Small szie Medium size Large size
Figure 6. Algorithms vs. instance sizes in average CPU

time.

0

5

10

15

SA-SA GA-SA SA-GA GA-GA

A
ve

ra
ge

 st
an

da
rd

 d
ev

ia
tio

n

Algorithm

Small szie Medium size Large size
Figure 7. Algorithms vs. instance sizes in average standard

deviation.

6. CONCLUSION

This paper studied parallel machine scheduling
problems with options to divide jobs into multiple sub-
jobs with pre-determined cut points. To utilize the char-
acteristic of dividable jobs for finding better solutions
and keep search time under control, a two-phase heuris-
tic algorithm design is proposed. Simulated annealing
and genetic algorithms are applied to the two algorithm
phases. Accordingly, four heuristic algorithms were
developed. Numerical experiment with test instances of
various sizes and complexity levels were conducted.
The analytical results led to the following conclusion.

1. Better solutions can be obtained by properly split-
ting jobs. Scheduling flexibility is increased if

 Heuristic Algorithms for Parallel Machine Scheduling Problems with Dividable Jobs 23

jobs are divided into smaller sub-jobs. It produces
more and potentially better solutions.

2. Dividing jobs into the greatest number of sub-jobs
possible increases search time dramatically. It be-
comes considerably worse with greater number of
jobs. The proposed two-phase algorithms can keep
a balance between solution quality and search ef-
ficiency. They are suitable and more practical for
larger-sized instances.

3. Both SA and GA can be applied for the two pha-
ses of the proposed algorithm. GA performs better
in phase 1 as it is able to explore more effectively
possible combination of job splitting. SA, on the
other hand, is more efficient in phase 2 when de-
termine job assignment and sequences, given a
group of sub-jobs. As shown, algorithm GA-SA
had the best overall performance by jointly con-
sidering solution quality, efficiency and robust-
ness.

REFERENCES

Anagnostopoulos, G. C. and Rabadi, G. (2002). A simu-
lated annealing algorithm for the unrelated parallel
machine scheduling problem, Proceedings of the
5th Biannual World Automation Congress, 14, 115-
120.

Armentano, V. A. and de França Filho, M. F. (2007), Mi-
nimizing total tardiness in parallel machine sched-
uling with setup times: An adaptive memory–based
GRASP approach, European Journal of Opera-
tional Research, 183(1), 100-114.

Azizoglu, M. and Kirca, O. (1998), Tardiness minimiza-
tion on parallel machines, International Journal of
Production Economics, 55(2), 163-168.

Azizoglu, M. and Kirca, O. (1999), On the minimization
of total weighted flow time with identical and uni-
form parallel machines, European Journal of Op-
erational Research, 113(1), 91-100.

Bilge, U., Kıraç, F., Kurtulan, M., and Pekgün, P. (2004),
A tabu search algorithm for parallel machine total
tardiness problem, Computers and Operations Re-
search, 31(3), 397-414.

Cheng, R., Gen, M., and Tozawa, T. (1995), Minmax ear-
liness/tardiness scheduling in identical parallel ma-
chine system using genetic algorithms, Computers
and Industrial Engineering, 29(1-4), 397-414.

Dessouky, M. M., Dessouky, M. I., and Verma, S. K.
(1998), Flowshop scheduling with identical jobs and
uniform parallel machines, European Journal of
Operational Research, 109(3), 620-631.

Guo, Y., Lim, A., Rodrigues, B., and Liang, Y. (2007),
Minimizing the makespan for unrelated parallel
machines, International Journal on Artificial Intel-
ligence Tools, 16(3), 309-415.

Kim, D., Kim, K., Jang, W., and Chen, F. F. (2002),
Unrelated parallel machine scheduling with setup
times using simulated annealing, Robotics and Com-
puter-Integrated Manufacturing, 18(3-4), 223-231.

Kim, D., Na, D., and Chen, F. F. (2003), Unrelated paral-
lel machine scheduling with setup times and a total
weighted tardiness objective, Robotics and Com-
puter–Integrated Manufacturing, 19(1-2), 173-181.

Kim, D., Na, D., Jang, W., and Chen, F. F. (2006),
Simulated annealing and genetic algorithm for un-
related parallel machine scheduling considering set-
up times, International Journal of Computer Appli-
cations in Technology, 26(1-2), 28-36.

Liao, C., and Lin, C. (2003), Makespan minimization for
two uniform parallel machines, International Jour-
nal of Production Economics, 84(2), 205-213.

Low, C. (2005), Simulated annealing heuristic for flow
shop scheduling problems with unrelated parallel
machines, Computers and Operations Research, 32
(8), 2013-2025.

Mason, A. J. (1992), Genetic algorithm and scheduling
problems, Ph.D. thesis, Department of Management
Sciences, University of Cambridge, UK.

Min, L. and Cheng, W. (1999), A genetic algorithm for
minimizing the makespan in the case of scheduling
identical parallel machines, Artificial Intelligence
in Engineering, 13(4), 399-403.

Piersma, N. and Van Dijk, W. (1996), A local search
heuristic for unrelated parallel machine scheduling
with efficient neighborhood search, Mathematical
and Computer Modelling, 24(9), 11-19.

Rubin, P. A. and Ragatz, G. L. (1994), Scheduling in a
sequence dependent setup environment with genetic
search, Computers and Operations Research, 22(1),
85-99.

Tan, K., Narasimhan, R., Rubin, P. A., and Ragatz, G. L.
(2000), A comparison of four methods for mini-
mizing total tardiness on a single processor with se-
quence dependent setup times, Omega, 28(3), 313-
326.

Tsai, C.-Y. and Tseng, C.-J. (2007), Unrelated parallel-
machines scheduling with constrained resources
and sequence-dependent setup time, Proceedings of
the 37th International Conference on Computers
and Industrial Engineering, Alexandria, Egypt, 20-
23.

Tsai, C.-Y. and Wu, S.-N. (2006), Application of simu-
lated annealing algorithm on the unrelated parallel
machine scheduling problem with limited resources,
Proceedings of the 36th International Conference
on Computers and Industrial Engineering, Taipei,
Taiwan, 20-26.

Yalaoui, F., and Chu, C. (2002), Parallel machine schedul-
ing to minimize total tardiness, International Journal
of Production Economics, 76(3), 265-279.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

