• 제목/요약/키워드: Genes

검색결과 11,686건 처리시간 0.04초

Profiling of Differentially Expressed Genes in Human Cervical Carcinoma

  • Lee, Seung-Hoon;Shim, Chan-Sub;Lee, Je-Ho
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.381-389
    • /
    • 2009
  • Using the DDRT-PCR, a series of differentially expressed genes in human primary cervical cancer was isolated. Among the 250 PCR amplimers, 88 gene fragments were confirmed by reverse Northern hybridization. Homology searches indicated that 26 out of 88 were previously known genes including calmodulin, human BBC1, histone H3.3, a series of ribosomal proteins (RPL19, RPS19, and RPS12), translation initiation factor (eIF-4AI), lactoferrin, integrin ${\alpha}6$, cell-surface antigens (CD9 and CD59), transcription factor (mbp-1), and mitochondrial proteins. Several unknown clones showed sequence homology with known genes. Furthermore, six of the unknown genes showed identical sequence with expressed sequence tags (EST) of unknown function. Differential expression patterns of identified genes were further examined and confirmed with multiple pairs of cervical cancer samples using Northern hybridization. Our profiling of differentially expressed genes may provide useful information about the underlying genetic alterations in human cervical carcinoma and diagnostic markers for this disease. The precise roles of these genes in cancer development remain to be elucidated.

Identification of Essential Genes in Streptococcus Pneumoniae by Allelic Replacement Mutagenesis

  • Song, Jae-Hoon;Ko, Kwan Soo;Lee, Ji-Young;Baek, Jin Yang;Oh, Won Sup;Yoon, Ha Sik;Jeong, Jin-Yong;Chun, Jongsik
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.365-374
    • /
    • 2005
  • To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.

Identification of Inducible Genes during Mast Cell Differentiation

  • Lee Eunkyung;Kang Sang-gu;Chang Hyeun Wook
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.232-237
    • /
    • 2005
  • Mast cells play an important role in allergic inflammation by releasing their bioactive mediators. The function of mast cells is enhanced by stimulation because of the induction of specific genes and their products. While many inducible genes have been elucidated, we speculated that a significant number of genes remain to be identified. Thus, we applied differential display (dd) PCR to establish a profile of the induced genes in bone marrow-derived mast cells (BMMCs) after they were co-cultured with 3T3 fibroblasts. To date, 150 cDNA fragments from the connective-type mast cells (CTMCs) were amplified. Among them, thirty cDNA fragments were reamplified for cloning and sequencing. The ddPCR strategy revealed that serine proteases were the most abundant genes among the sequenced clones induced during the maturation. Additionally, unknown genes from the co-culture of BMMCs with 3T3 fibroblasts were identified. We confirmed their induction in the CTMCs by Northern blot analysis and RT-PCR. Characterization of these induced genes during the maturation processes will provide insight into the functions of mast cells.

Frequency and Allelism of Deleterious Genes Concealed in Korean Natural Population of Drosophila: Lethality, Sterility and Visible Mutants

  • Choo, Jong-Kil;Lee, Taek-Jun
    • 한국동물학회지
    • /
    • 제19권1호
    • /
    • pp.15-24
    • /
    • 1976
  • 1971年부터 1973年까지 安養에서 採集한 Drosophila melanogaster의 蹄2 染色體上에 保有되어 있는 致死因子, 不姙因子 및 可視突無變異體의 頻度를 調査하였다. 1) 致死 및 反致死因子를 保有하고 있는 染色體의 頻度는 3년간 평균 28.2% 로 나타났고, 3年간의 빈도는 큰 差異가 없었다. 2) 安養自然集團의 致死遺傳因子間의 同座率은 0.77%였다. 致死因子로 이한 集團內에서의 elimination rate $(IQ^2)$는 0.0008로 추정되었다. 3) 第2染色體에 保有되어있는 劣性不姙因子는 암컷 9.1%, 수컷 6.8%, 그리고 兩性不姙이 2%로 나타났다. 4) 劣性可視突然變異體인 rbl/rbl과 bw/bw은 第2染色體에서 동협접합자가 될 때 檢出된다. 本實驗에서 rbl 因子는 2.7%였고 bw 因子는 1.3%로 나타났다.

  • PDF

Identification of Novel Genes with Proapoptotic Activity

  • Kang Eun-Ju;Kim Jeong-Min;Kim Na-Young;Park Kyung-Mi;Park Seong-Min;Kim Nam-Soon;Yoo Hyang-Sook;Yeom Young-Il;Kim Soo-Jung
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.77-79
    • /
    • 2006
  • In order to identify novel proapoptotic genes, we screened approximately 1,000 hypothetical genes whose functions are completely unknown. After these genes were transiently expressed in HeLa cells, their nuclei images were captured using automated high-speed fluorescence microscope, through which the ratio of apoptotic nuclei was estimated. We selected genes that induce greater than 3-fold increase in apoptotic nuclei compared to that of the vector control. The candidate proapoptotic genes were sequenced and their effects on cell death were further confirmed by the additional assay, DNA fragmentation ELISA. Finally, we were able to identify 4 full-length hypo-thetical genes with proapoptotic activity.

Comparative Expression of Stress Related Genes in Response to Salt-stressed Aspen by Real-time RT-PCR

  • Ku, Ja-Jung;Kim, Yong-Yul
    • 한국자원식물학회지
    • /
    • 제21권3호
    • /
    • pp.210-215
    • /
    • 2008
  • Gene-expression analysis is increasingly important in biological research, with real-time reverse PCR (RTPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. However, this technique requires important preliminary work for standardizing and optimizing the many parameters involved in the analysis. Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive and reproducible measurements for specific mRNA sequence. Several genes are regulated in response to abitoic stresses, such as salinity, and their gene products function in stress response and tolerance. The design of the primers and TaqMan probes for real-time PCR assays were carried out using the Primer $Express^{TM}$ software 3.0. The PCR efficiency was estimated through the linear regression of the dilution curve. To understand the expression pattern of various genes under salt stressed condition, we have developed a unique public resource of 9 stress-related genes in poplar. In this study, real-time RT-PCR was used to quantify the transcript level of 10 genes (9 stress-related genes and 1 house keeping gene) that could play a role in adaptation of Populus davidiana. Real-time RT-PCR analyses exhibited different expression ratios of related genes. The data obtained showed that determination of mRNA levels could constitute a new approach to study the stress response of P. davidiana after adaptation during growth in salinity condition.

Effect of 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene on cellulose synthase A (CesA) genes in flax (Linum usitatissimum L. 'Nike') seedlings

  • Lim, Hansol;Paek, Seung-Ho;Oh, Seung-Eun
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1237-1248
    • /
    • 2018
  • Introduction Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages. Objective To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development. Methods The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. 'Nike') seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with $10^{-4}$ and $10^{-3}M$ 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4-6-day-old flax seedlings. Results ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC. Conclusion Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Expression Analysis of Sweetpotato Sporamin Genes in Response to Infection with the Root-Knot Nematode Meloidogyne incognita

  • Jung-Wook Yang;Yun-Hee Kim
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.163-168
    • /
    • 2023
  • Sweetpotato (Ipomoea batatas [L.]) is a globally important root crop cultivated for food and industrial processes. The crop is susceptible to the root-knot nematode (RKN) Meloidogyne incognita, a major plant-parasitic RKN that reduces the yield and quality of sweetpotato. Previous transcriptomic and proteomic analyses identified several genes that displayed differential expression patterns in susceptible and resistant cultivars in response to M. incognita infection. Among these, several sporamin genes were identified for RKN resilience. Sporamin is a storage protein primarily found in sweetpotato and morning glory (Ipomoea nil). In this study, transcriptional analysis was employed to investigate the role of sporamin genes in the defense response of sweetpotato against RKN infection in three susceptible and three resistant cultivars. Twenty-three sporamin genes were identified in sweetpotato and classified as group A or group B sporamin genes based on comparisons with characterized sweetpotato and Japanese morning glory sporamins. Two group A sporamin genes showed significantly elevated levels of expression in resistant but not in susceptible cultivars. These results suggest that the elevated expression of specific sporamin genes may play a crucial role in protecting sweetpotato roots from RKN infection.

Hox Genes are Differentially Expressed during Mouse Placentation

  • Park, Sung-Joo;Lee, Ji-Yeon;Ma, Ji-Hyun;Kim, Helena Hye-Soo;Kim, Myoung-Hee
    • 대한의생명과학회지
    • /
    • 제18권2호
    • /
    • pp.169-174
    • /
    • 2012
  • The placenta is an extraembryonic tissue that is formed between mother and fetus and mediates delivery of nutrients and oxygen from the mother to the fetus. Because of its essential role in sustaining the growth of the fetus during gestation, defects in its development and function frequently result in fetal growth retardation or intrauterine death, depending on its severity. Vertebrate Hox genes are well known transcription factors that are essential for the proper organization of the body plan during embryogenesis. However, certain Hox genes have been known to be expressed in placenta, implying that Hox genes not only play a crucial role during embryonic patterning but also play an important role in placental development. So far, there has been no report that shows the expression pattern of the whole Hox genes during placentation. In this study, therefore, we investigated the Hox gene expression pattern in mouse placenta, from day 10.5 to 18.5 of gestation using real-time RT-PCR method. In general, the 5' posterior Hox genes were expressed more in the developing placenta compared to the 3' Hox genes. Statistical analysis revealed that the expression of 15 Hox genes (Hoxa9, -a11, -a13/ -b8, -b9/ -c6, -c9, -c13/ -d1, -d3, -d8, -d9, -d10, -d11, -d12) were significantly changed in the course of gestation. The majority of these genes showed highest expression at gestational day 10.5, suggesting their possible role in the early stage during placental development.