Identification of Essential Genes in Streptococcus Pneumoniae by Allelic Replacement Mutagenesis

  • Song, Jae-Hoon (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Ko, Kwan Soo (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Lee, Ji-Young (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Baek, Jin Yang (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Oh, Won Sup (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Yoon, Ha Sik (LG Life Sciences, Inc.) ;
  • Jeong, Jin-Yong (Asan Institute for Life Sciences) ;
  • Chun, Jongsik (School of Biological Sciences, Seoul National University)
  • Received : 2005.01.07
  • Accepted : 2005.03.02
  • Published : 2005.06.30

Abstract

To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.

Keywords

Acknowledgement

Supported by : Ministry of Commerce, Industry and Energy

References

  1. Adam, D. (2002) Global antibiotic resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 50, (Topic T1), 1-5 https://doi.org/10.1093/jac/dkf037
  2. Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N., et al. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99, 966-971
  3. Apfel, C. M., Locher, H., Evers, S., Takács, B., Hubschwerlen, C., et al. (2001) Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. 45, 1058-1064 https://doi.org/10.1128/AAC.45.4.1058-1064.2001
  4. Arigoni, F., Talabot, F., Peitsch, M., Degerton, M. D., Meldrum, E., et al. (1998) A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16, 851- 858 https://doi.org/10.1038/nbt0998-851
  5. Bruccoleri, R. E., Dougherty, T. J., and Davison, D. B. (1998) Concordance analysis of microbial genomes. Nucleic Acids Res. 16, 4482-4486
  6. Chalker, A. F., Minehart, H. W., Hughes, N. J., Koretke, K. K., Lonetto, M. A., et al. (2001) Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J. Bacteriol. 183, 1259-1268 https://doi.org/10.1128/JB.183.4.1259-1268.2001
  7. Chan, P. F., O'Dwyer, K. M., Palmer, L. M., Ambrad, J. D., Ingraham, K. A., et al. (2003) Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of -action studies in Streptococcus pneumoniae. J. Bacteriol. 185, 2051-2058 https://doi.org/10.1128/JB.185.6.2051-2058.2003
  8. El Zoeiby, A., Sanschagrin, F., and Levesque, R. C. (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47, 1-12 https://doi.org/10.1046/j.1365-2958.2003.03289.x
  9. Forsyth, R. A., Haselbeck, R. J., Ohlsen, K. L., Yamamoto, R. T., Xu, H., et al. (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387-1400 https://doi.org/10.1046/j.1365-2958.2002.02832.x
  10. Havarstein, L., Coomaraswamy, G., and Morrison, D. A. (1995) An unmodified heptadecaptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92, 11140-11144
  11. Hoskins, J., Alborn, W. E. Jr, Arnold, J., Blaszczak, L. C., Burgett, S., et al. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709-5717 https://doi.org/10.1128/JB.183.19.5709-5717.2001
  12. Hutchison, C. A., Pterson, S. N., Gill, S. R., Cline, R. T., White, O., et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165-2169 https://doi.org/10.1126/science.286.5447.2165
  13. Ji, Y., Zhang, B., Van Horn, S. F., Warren, P., Woodnutt, G., et al. (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266-2269 https://doi.org/10.1126/science.1063566
  14. Jordan, I. K., Rogozin, I. B., Wolf, Y. I., and Koonin, E. V. (2002) Essential genes are more evolutionary conserved than are nonessential genes in bacteria. Genome Res. 12, 962-968
  15. Kim, C.-H. (2003) A Salmonella typhimurium rfaE mutant recovers invasiveness for human epithelial cells when complemented by wild type rfaE (controlling, biosynthesis of ADP-L-glycero-D-manno-heptose-containing lipopolysaccharide). Mol. Cells 15, 226-232
  16. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678-4683
  17. Mills, S. D. (2003) The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51, 749-752 https://doi.org/10.1093/jac/dkg178
  18. Paton, J. C., Berry, A. M., Lock, R. A., Hansman, D., and Manning, P. A. (1986) Cloning and expression in Escherichia coli of the Streptococcus pneumoniae gene encoding pneumolysin. Infect. Immun. 54, 50-55
  19. Pierce, B. J., Ianelli, F., and Pozzi, F. (2002) Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae Res. Microbiol. 153, 243-247 https://doi.org/10.1016/S0923-2508(02)01312-8
  20. Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98, 12712-12717
  21. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631-637 https://doi.org/10.1126/science.278.5338.631
  22. Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506 https://doi.org/10.1126/science.1061217
  23. Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A., and Pucci, M. J. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152-3162 https://doi.org/10.1093/nar/gkf418
  24. Trieu-Cuot, P. and Courvalin, P. (1983) Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′- aminoglycoside phosphotransferase type III. Gene 23, 331- 341 https://doi.org/10.1016/0378-1119(83)90022-7
  25. Waller, A. S. and Clements, J. M. (2002) Novel approaches to antimicrobial therapy: peptide deformylase. Curr. Opin. Drug Discov. Devel. 5, 785-792
  26. Zalacain, M., Biswas, S., Ingraham, K. A., Ambrad, J., Bryant, A., et al. (2004) A global approach to identify novel broadspectrum antibacterial targets among proteins of unknown function. J. Mol. Microbiol. Biotechnol. 6, 109-126
  27. Zhang, R., Ou, Z. Y., and Zhang, C. T. (2004) DEG: a database of essential genes. Nucleic Acids Res. 32, D271-D272 https://doi.org/10.1093/nar/gkh178