Browse > Article

Identification of Essential Genes in Streptococcus Pneumoniae by Allelic Replacement Mutagenesis  

Song, Jae-Hoon (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
Ko, Kwan Soo (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
Lee, Ji-Young (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
Baek, Jin Yang (Asian-Pacific Research Foundation for Infectious Diseases (ARFID))
Oh, Won Sup (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Yoon, Ha Sik (LG Life Sciences, Inc.)
Jeong, Jin-Yong (Asan Institute for Life Sciences)
Chun, Jongsik (School of Biological Sciences, Seoul National University)
Abstract
To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.
Keywords
Allelic Replacement Mutagenesis; Essential Genes; Genomics; New Antimicrobial Agent; Pneumococci;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 61  (Related Records In Web of Science)
연도 인용수 순위
1 Chalker, A. F., Minehart, H. W., Hughes, N. J., Koretke, K. K., Lonetto, M. A., et al. (2001) Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J. Bacteriol. 183, 1259-1268   DOI   ScienceOn
2 El Zoeiby, A., Sanschagrin, F., and Levesque, R. C. (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47, 1-12   DOI   ScienceOn
3 Ji, Y., Zhang, B., Van Horn, S. F., Warren, P., Woodnutt, G., et al. (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266-2269   DOI   ScienceOn
4 Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678-4683
5 Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A., and Pucci, M. J. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152-3162   DOI   ScienceOn
6 Hoskins, J., Alborn, W. E. Jr, Arnold, J., Blaszczak, L. C., Burgett, S., et al. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709-5717   DOI   ScienceOn
7 Trieu-Cuot, P. and Courvalin, P. (1983) Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′- aminoglycoside phosphotransferase type III. Gene 23, 331- 341   DOI   ScienceOn
8 Arigoni, F., Talabot, F., Peitsch, M., Degerton, M. D., Meldrum, E., et al. (1998) A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16, 851- 858   DOI   ScienceOn
9 Paton, J. C., Berry, A. M., Lock, R. A., Hansman, D., and Manning, P. A. (1986) Cloning and expression in Escherichia coli of the Streptococcus pneumoniae gene encoding pneumolysin. Infect. Immun. 54, 50-55
10 Jordan, I. K., Rogozin, I. B., Wolf, Y. I., and Koonin, E. V. (2002) Essential genes are more evolutionary conserved than are nonessential genes in bacteria. Genome Res. 12, 962-968
11 Hutchison, C. A., Pterson, S. N., Gill, S. R., Cline, R. T., White, O., et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165-2169   DOI   ScienceOn
12 Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98, 12712-12717
13 Kim, C.-H. (2003) A Salmonella typhimurium rfaE mutant recovers invasiveness for human epithelial cells when complemented by wild type rfaE (controlling, biosynthesis of ADP-L-glycero-D-manno-heptose-containing lipopolysaccharide). Mol. Cells 15, 226-232
14 Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631-637   DOI   ScienceOn
15 Zhang, R., Ou, Z. Y., and Zhang, C. T. (2004) DEG: a database of essential genes. Nucleic Acids Res. 32, D271-D272   DOI   ScienceOn
16 Adam, D. (2002) Global antibiotic resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 50, (Topic T1), 1-5   DOI   ScienceOn
17 Zalacain, M., Biswas, S., Ingraham, K. A., Ambrad, J., Bryant, A., et al. (2004) A global approach to identify novel broadspectrum antibacterial targets among proteins of unknown function. J. Mol. Microbiol. Biotechnol. 6, 109-126
18 Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N., et al. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99, 966-971
19 Forsyth, R. A., Haselbeck, R. J., Ohlsen, K. L., Yamamoto, R. T., Xu, H., et al. (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387-1400   DOI   ScienceOn
20 Pierce, B. J., Ianelli, F., and Pozzi, F. (2002) Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae Res. Microbiol. 153, 243-247   DOI   ScienceOn
21 Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., et al. (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498-506   DOI   ScienceOn
22 Mills, S. D. (2003) The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51, 749-752   DOI   ScienceOn
23 Waller, A. S. and Clements, J. M. (2002) Novel approaches to antimicrobial therapy: peptide deformylase. Curr. Opin. Drug Discov. Devel. 5, 785-792
24 Bruccoleri, R. E., Dougherty, T. J., and Davison, D. B. (1998) Concordance analysis of microbial genomes. Nucleic Acids Res. 16, 4482-4486
25 Chan, P. F., O'Dwyer, K. M., Palmer, L. M., Ambrad, J. D., Ingraham, K. A., et al. (2003) Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of -action studies in Streptococcus pneumoniae. J. Bacteriol. 185, 2051-2058   DOI
26 Apfel, C. M., Locher, H., Evers, S., Takács, B., Hubschwerlen, C., et al. (2001) Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. 45, 1058-1064   DOI   ScienceOn
27 Havarstein, L., Coomaraswamy, G., and Morrison, D. A. (1995) An unmodified heptadecaptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92, 11140-11144