• Title/Summary/Keyword: Generator matrix

Search Result 140, Processing Time 0.033 seconds

A Polynomial-Time Algorithm for Breaking the McEliece's Public-Key Cryptosystem (McEliece 공개키 암호체계의 암호해독을 위한 Polynomial-Time 알고리즘)

  • Park, Chang-Seop-
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1991.11a
    • /
    • pp.40-48
    • /
    • 1991
  • McEliece 공개키 암호체계에 대한 새로운 암호해독적 공격이 제시되어진다. 기존의 암호해독 algorithm이 exponential-time의 complexity를 가지는 반면, 본고에서 제시되어지는 algorithm은 polynomial-time의 complexity를 가진다. 모든 linear codes에는 systematic generator matrix가 존재한다는 사실이 본 연구의 동기가 된다. Public generator matrix로부터, 암호해독에 사용되어질 수 있는 새로운 trapdoor generator matrix가 Gauss-Jordan Elimination의 역할을 하는 일련의 transformation matrix multiplication을 통해 도출되어진다. 제시되어지는 algorithm의 계산상의 complexity는 주로 systematic trapdoor generator matrix를 도출하기 위해 사용되는 binary matrix multiplication에 기인한다. Systematic generator matrix로부터 쉽게 도출되어지는 parity-check matrix를 통해서 인위적 오류의 수정을 위한 Decoding이 이루어진다.

  • PDF

A Study on the High Speed Curve Generator Using 1-Dimensional Systolic Array Processor (1차원 시스톨릭 어레이 프로세서를 이용한 고속 곡선 발생기에 관한 연구)

  • 김용성;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.1-11
    • /
    • 1994
  • In computer graphics since objects atre constructed by lines and curves, the high-speed curve generator is indispensible for computer aided design and simulatation. Since the functions of graphic generation can be represented as a series of matrix operations, in this paper, two kind of the high-speed Bezier curve generator that uses matrix equation and a recursive relation for Bezier polynomials are designed. And B-spline curve generator is designed using interdependence of B-spline blending functions. As the result of the comparison of designed curve generator and reference [5], [6] in the operation time and number of operators, the curve generator with 1-dimensional systolic array processor for matrix vector operation that uses matrix equation for Bezier curve is more effective.

  • PDF

Direct Calculation of A Matrix in Multimachine Electric Power Systems (다수 발전기 계통의 A행렬 직접계산법)

  • Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.221-225
    • /
    • 1989
  • Direct calculation algorithm for the elements of A matrix in multimachine power systems with constant impedance loads has been suggested. Generator's rotor parameters need not be determined from the manufacturer's data. We can identify the elements of A matrix into two categories: One is related to only generator parameters, and the other is related to generator parameters, initial values, and $Z_{Bus}$ matrix.

  • PDF

Wind Power System using Doubly-Fed Induction Generator and Matrix Converter (매트릭스컨버터와 이중여자유도발전기를 사용한 풍력발전시스템)

  • Lee, Dong-Geun;Kwon, Gi-Hyun;Han, Byung-Moon;Li, Yu-Long;Choi, Nam-Sup;Choy, Young-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.985-993
    • /
    • 2008
  • This paper proposes a new DFIG(Doubly-Fed Induction Generator) system using matrix converter, which is very effectively used for interconnecting the wind power system to the power grid. The operation of proposed system was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The laboratory scaled-model was built using a motor-generator set with vector drive system, and a matrix converter with DSP(Digital Signal Processor). The operation of scaled-model was tested by modeling the specific variable-speed wind turbine using the real wind data in order to make the scaled-model simulate the real wind power system as close as possible. The simulation and experimental results confirm that matrix converter can be applied for the DFIG system.

A Network Reduction using Weak Coupling Method (Weak Coupling Method를 이용한 계통 축약)

  • Lee, H.M.;Rho, K.M.;Kwon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1067-1069
    • /
    • 1999
  • This paper presents a network reduction using weak coupling method. Weak coupling method of identifying coherent generator groups are proposed. The partitioning technique used in this paper is based on a property of sparse matrix factorization. When a matrix has been factorized, a system is divided into study area, boundary buses and external area. A reduction process for external system starts with the load bus elimination and coherent generator aggregation. An identification of coherent generator group, network partitioning and network reduction are presented.

  • PDF

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

Efficient Implementation of a Pseudorandom Sequence Generator for High-Speed Data Communications

  • Hwang, Soo-Yun;Park, Gi-Yoon;Kim, Dae-Ho;Jhang, Kyoung-Son
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.222-229
    • /
    • 2010
  • A conventional pseudorandom sequence generator creates only 1 bit of data per clock cycle. Therefore, it may cause a delay in data communications. In this paper, we propose an efficient implementation method for a pseudorandom sequence generator with parallel outputs. By virtue of the simple matrix multiplications, we derive a well-organized recursive formula and realize a pseudorandom sequence generator with multiple outputs. Experimental results show that, although the total area of the proposed scheme is 3% to 13% larger than that of the existing scheme, our parallel architecture improves the throughput by 2, 4, and 6 times compared with the existing scheme based on a single output. In addition, we apply our approach to a $2{\times}2$ multiple input/multiple output (MIMO) detector targeting the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) system. Therefore, the throughput of the MIMO detector is significantly enhanced by parallel processing of data communications.

Comparison of the first and the second order eigenvalue sensitivity coefficients affected by generator modeling (발전기 모델링 정도에 의한 고유치 일차${\cdot}$이차 감도계수 비교)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.345-347
    • /
    • 2004
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator has an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multi-machine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimizing controller parameters to improve system stability. This paper compare the first and second order eigenvalue sensitivity coefficients of controllers using generator full model with those of two-axis model. As a result of an example, the estimated eigenvalues using the first and the second eigenvalue sensitivity coefficients using generator full model is very close to those of state matrix. Also the error ratios throughout a wide range of controller parameters is less than $1\%$.

  • PDF

Analysis of the first order eigenvalue sensitivity affected by generator model (발전기 모델링 정도에 의한 고유치 감도계수에 미치는 영향해석)

  • Cho, Eon-Jung;Lee, Kun-Jae;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.119-121
    • /
    • 2003
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator gives an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multimachine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimization of controller parameters to improve system stability. This paper compare the first order eigenvalue sensitivity coefficients of controllers in case of generator full model with those of two-axis model. As a result of an example the estimated eigenvalues using sensitivity coefficients in case of generator full model is very close to those of state matrix within 1% error ratios.

  • PDF

On Fast M-Gold Hadamard Sequence Transform (고속 M-Gold-Hadamard 시퀀스 트랜스폼)

  • Lee, Mi-Sung;Lee, Moon-Ho;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.93-101
    • /
    • 2010
  • In this paper we generate Gold-sequence by using M-sequence which is made by two primitive polynomial of GF(2). Generally M-sequence is generated by linear feedback shift register code generator. Here we show that this matrix of appropriate permutation has Hadamard matrix property. This matrix proves that Gold-sequence through two M-sequence and additive matrix of one column has one of major properties of Hadamard matrix, orthogonal. and this matrix show another property that multiplication with one matrix and transpose matrix of this matrix have the result of unit matrix. Also M-sequence which is made by linear feedback shift register gets Hadamard matrix property mentioned above by adding matrices of one column and one row. And high-speed conversion is possible through L-matrix and the S-matrix.