• Title/Summary/Keyword: Generator cooling

Search Result 190, Processing Time 0.027 seconds

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

Study of Large Wind Power Generator with Evaporative Cooling System

  • Wang, Haifeng;Li, Wang;Guo, Hui;Yang, Jie;Gu, Guobiao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • Evaporative cooling system has the advantage of high cooling performance, good insulation properties, less electrical fault, easy to maintain and high reliability, can meet the requirements of the cooling system in wind power generators. Based on a large number of theoretical researches and engineering practices, we had a comprehensive study of evaporative cooling wind power generator. Studies show that evaporative cooling system has advantage as the cooling system of wind power generator.

An Experimental Study on Water Absorbtion Characteristics of Generator Stator Bar Insulation by Cooling Water Temperature in 500MW Capacity Power Plant (500MW급 화력 발전기 냉각수 온도에 따른 고정자 권선 절연재의 흡습 특성에 관한 실험적 연구)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1392-1397
    • /
    • 2008
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. De-mineralized water is used to cool stator bars during the normal operation of generator in large power plants because the water cooled method has highest cooling efficient. Water absorption of bar insulation is progressed by several causes such as generation of water leak path by corrosion, delamination of insulation by vibration, and inadequate water treatment, etc.. Reliable water absorption diagnostics of generator stator bar is important to ensure the availability of power plant and to reduce maintenance cost by generator accident. It is described that the water absorption characteristics for generator stator bar insulation used in 500MW capacity standard fossil power plant by cooling water temperature. It is verified that the management of stator cooling water temperature is one of the important factors to decrease water absorption rate of generator stator bars.

Project Summary of Three Gorges' 840MVA Hydro-generator with Close-Loop-Self-Circulating Evaporative Cooling System

  • Yuan, Jiayi;Meng, Dawei;Gu, Guobiao;Song, Fuchuan;Zhang, Tianpeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • In December 2011 and July 2012, two sets of 840MVA hydro-generator of Three Gorges on Yangtze River with Close-loop-self-circulating evaporative cooling (CLSCEC) system were put into commercial operation. In this paper, we make engineering summary of these two generators with CLSCEC system. We also make a comparison between the internal water cooling (IWC) hydro-generator and the CLSCEC hydro-generator used in Three Gorges power plant in fields of their operating characteristics, working performances, technical features, working safety and reliability. In addition, engineering structures, type tests' results and systematic emulating calculation of CLSCEC schemes are analyzed.

Water Absorption Sensor of Generator Stator Bar Insulation using Cross Capacitance (크로스 커패시턴스를 이용한 발전기 고정자 권선 절연물 흡습 측정 센서)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun;Lee, Rae-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1972-1977
    • /
    • 2011
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. To cool down the heat emitted from generator winding during its operation, a majority of generators use de-mineralized water characterized by high cooling efficiency. Contrary to such the excellent cooling efficiency, however, the damaged bar insulations attributed to the absorption of cooling water in the generator stator winding lead to highly time- and cost consuming efforts as well as to service deterioration due to unexpected forced outage of generator. It is described that the new design of water absorption sensor using cross capacitance for generator in power plant in order to increase the reliability of water absorption diagnostics for generator stator bar insulation.

Analysis of Cooling Characteristics of Broadcasting LED Light with Ion Wind Generator (이온풍 공랭 방식 적용을 위한 방송용 LED 조명장치의 냉각 특성 해석)

  • Park, Chul-Woo;Lee, Seung-Jun;Kim, Dae-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.693-698
    • /
    • 2012
  • In the present work, numerical analyses of broadcasting LED light with ion wind generator have been carried out for enhancement of cooling performance. Ion wind generator is produced and experimented before analysis. With the use of result of experiments, broadcasting LED light model is computed. Ion wind velocity into LED light is varied with 0~3 m/s. Based on the numerical results, the area of duct-type ion wind generator was designed to reduce the volume flow rate of ion wind. The modified inlet geometry shows sufficient cooling capability. And, through modified ion wind generator, the volume flow rate of ion wind has been largely reduced.

Research about the Evaporative Cooling Sleeve of 3.6 MW Wind Generator Stator

  • Yu, Shunzhou;Yang, Jie;Yuan, Jiayi;Tian, Xindong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.61-66
    • /
    • 2014
  • The evaporative cooling technology used in Wind generator stator has unique advantages. Combined with the structure of motor stator and operating conditions, this report based on the research project for the evaporative cooling sleeve of the 3.6MW wind generator, introduces the material requirements and structural characteristics of the sleeve, simulates on the stress, displacement and stability by finite analysis method, and tests the products experimentally. The research results show that the epoxy resin-glass materials have a higher strength and better insulation properties, but the evaporative cooling of the wind generator stator sleeve, because of its thin-walled, and the external pressure, so it's the less rigid. Should make full use of the motor stator core structure, increase its stiffness and improve the stability of the epoxy resin-glass sleeve, which for thin-walled the epoxy resinglass sleeve on the successful application of wind turbines has played an important role.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.