While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.
Purpose: This study aimed to develop a case-based nursing education program using generative artificial intelligence and to assess its usability and applicability in nursing curriculums. Methods: The program was developed by following the five steps of the ADDIE model: analysis, design, development, implementation, and evaluation. A panel of five nursing professors served as experts to implement and evaluate the program. Results: Utilizing ChatGPT, six program modules were designed and developed based on experiential learning theory. The experts' evaluations confirmed that the program was suitable for case-based learning, highly usable, and applicable to nursing education. Conclusion: Generative artificial intelligence was identified as a valuable tool for enhancing the effectiveness of case-based learning. This study provides insights and future directions for integrating generative artificial intelligence into nursing education. Further research should be attempted to implement and evaluate this program with nursing students.
Sliding bearings are crucial rotating mechanical components in nuclear power plants, and their failures can result in severe economic losses and human casualties. Deep learning provides a new approach to bearing fault diagnosis, but there is currently a lack of a universal fault diagnosis model for studying bearing-rotor systems under various operating conditions, speeds and faults. Research on bearing-rotor systems supported by sliding bearings is limited, leading to insufficient fault data. To address these issues, this paper proposes a fault diagnosis model framework for bearing-rotor systems based on a deep convolutional generative adversarial network (TF-DLGAN). This model not only exhibits outstanding fault diagnosis performance but also addresses the issue of insufficient fault data. An experimental platform is constructed to conduct fault experiments under various operating conditions, speeds and faults, establishing a dataset for sliding bearing-rotor system faults. Finally, the model's effectiveness is validated using this dataset.
최근에 제안된 WGAN(Wasserstein generative adversarial network)의 등장으로 GAN(generative adversarial network)의 고질적인 문제인 까다롭고 불안정한 학습과정이 다소 개선되기는 하였으나 여전히 수렴이 안되거나 자연스럽지 못한 출력물을 생성하는 등의 경우가 발생한다. 이러한 문제를 해결하기 위하여 본 논문에서는 분별기가 실제 데이터 확률분포를 보다 정확히 추정할 수 있도록 표본화 과정을 개선하는 동시에 분별기 함수의 립쉬츠 연속조건을 안정적으로 유지시키기 위한 알고리즘을 제안한다. 다양한 실험을 통하여 제안 기법의 특성을 분석하고 성능을 확인한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권8호
/
pp.3984-4005
/
2017
Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.
최근 컴퓨팅 파워의 폭발적인 발전으로 컴퓨팅의 한계 라는 장벽이 사라지면서 딥러닝 이라는 이름 하에 순환 신경망(RNN), 합성곱 신경망(CNN) 등 다양한 모델들이 제안되어 컴퓨터 비젼(Computer Vision)의 수많은 난제들을 풀어나가고 있다. 2014년 발표된 대립쌍 모델(Generative Adversarial Network)은 비지도 학습에서도 컴퓨터 비젼의 문제들을 충분히 풀어나갈 수 있음을 보였고, 학습된 생성기를 활용하여 생성의 영역까지도 연구가 가능하게 하였다. GAN은 여러 가지 모델들과 결합하여 다양한 형태로 발전되고 있다. 기계학습에는 데이터 수집의 어려움이 있다. 너무 방대하면 노이즈를 제거를 통한 효과적인 데이터셋의 정제가 어렵고, 너무 작으면 작은 차이도 큰 노이즈가 되어 학습이 쉽지 않다. 본 논문에서는 GAN 모델에 영상 프레임 내의 얼굴 영역 추출을 위한 deep CNN 모델을 전처리 필터로 적용하여 두 사람의 제한된 수집데이터로 안정적으로 학습하여 다양한 표정의 합성 이미지를 만들어 낼 수 있는 방법을 제시하였다.
본 연구에서는 계절 변화에 관련된 개념 유형을 분석하고, 관련 개념들에 관한 토의에 의해 인지갈등을 해소하는 방법을 강조한 발생학습 전략의 적용 효과를 알아보고자 하였다. 계절변화 관련 지구과학 개념 유형은 100가지 였으며, 그 중에서 66가지는 오개념을 포함한 비과학적 개념 유형이었다. 계절변화에 관련된 개념 평가도구는 R&D과정과 2번의 현장검증을 거쳐 개발되었다. 실험집단에는 지구과학개념 유형과 인지갈등을 반영한 4단계의 발생학습 전략을 적용하였다. 한편 통제집단에는 전통적인 교수 학습 전략을 적용하였다. 유의수준 .05에서 공변량분석을 실시한 결과 두 집단 간에는 유의미한 차이가 있는 것으로 나타났다. 이러한 연구 결과는 계절변화와 관련된 오개념을 지구과학적 개념으로 변화시키는 데 발생학습전략이 하나의 가능한 대안이 될 수 있음을 의미하는 것으로 볼 수 있다.
본 연구의 목적은 ChatGPT와 같은 생성형 AI 시대를 맞아 이와 같은 언어모델에 대해 소개하고, 이를 활용한 도서관의 데이터 리터러시 교육 구성요소를 고민하고 방향을 제시하고자 하는 연구이다. 이를 위해 다음과 같은 세 가지 연구 문제를 제시하였다. 먼저 ChatGPT 유사 언어모델의 기술적 특징을 살펴보고, 이후 생성형 인공지능 기술 기반 서비스 플랫폼을 활용하여 적합한, 정확한 정보를 유용하게 활용하기 위한 이용자의 데이터 리터러시 역량 교육의 필요성을 주창하였다. 마지막으로 ChatGPT 시대 도서관 데이터 리터러시 교육을 위해 데이터에 대한 이해, 데이터 생성, 데이터 수집, 데이터 검증, 데이터 관리, 데이터 이용 및 공유, 데이터 윤리와 같은 7개 구성항목을 포함한 데이터 리터러시 교육 구성안을 제안하였다. 결론적으로 ChatGPT와 같은 생성형 인공지능 기술이 이용자의 정보 활용에 많은 영향을 미치게 될 것이라 예상되는 만큼 도서관은 이러한 기술의 장단점, 문제점 등에 대해 한발 먼저 고민하고 이를 통해 도서관의 정보서비스를 한층 개선할 수 있는 토대로 삼아야 할 것을 강조하며 마무리했다.
생성형 인공지능은 그 광범위한 응용 범위와 깊은 영향력으로 인해 사회의 주목을 받고 있습니다. 본 논문은 통합 기술 수용 및 사용 이론 2(UTAUT2)를 기반으로 개인의 혁신성과 인지된 위험 등의 변수를 결합하여, 기업이 생성형 인공지능을 채택하는 데 영향을 미치는 주요 요인을 연구하기 위해 종합적인 이론 모델을 구축하였습니다. 우리는 가설 경로를 검증하기 위해 구조 방정식 모델(SEM)을 사용하였고, 부트스트래핑 방법을 통해 수용 의향의 매개 효과를 검증하였으며, 계층적 회귀 분석을 통해 인지된 위험의 조절 효과를 탐구하였습니다. 연구 결과, 성과 기대, 노력 기대, 사회적 영향, 가치 평가 및 개인 혁신성이 수용 의향에 긍정적인 영향을 미치며, 수용 의향은 이러한 요인들과 사용 행동 사이에서 중요한 매개 역할을 한다는 것이 밝혀졌습니다. 반면, 인지된 위험은 수용 의향과 사용 행동 사이에서 부정적인 조절 효과를 가지는 것으로 나타났습니다. 본 연구는 기업이 생성형 인공지능을 효과적으로 채택하는 방법에 대해 이론적 근거와 실증적 지원을 제공하며, 중요한 실무적 의의를 가집니다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.