• 제목/요약/키워드: Generative model

검색결과 377건 처리시간 0.031초

다중 스케일 그라디언트 조건부 적대적 생성 신경망을 활용한 문장 기반 영상 생성 기법 (Text-to-Face Generation Using Multi-Scale Gradients Conditional Generative Adversarial Networks)

  • ;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.764-767
    • /
    • 2021
  • While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.

생성형 인공지능을 활용한 사례 기반 간호 교육 프로그램 개발 (Development of a case-based nursing education program using generative artificial intelligence)

  • 안정희;박혜옥
    • 한국간호교육학회지
    • /
    • 제29권3호
    • /
    • pp.234-246
    • /
    • 2023
  • Purpose: This study aimed to develop a case-based nursing education program using generative artificial intelligence and to assess its usability and applicability in nursing curriculums. Methods: The program was developed by following the five steps of the ADDIE model: analysis, design, development, implementation, and evaluation. A panel of five nursing professors served as experts to implement and evaluate the program. Results: Utilizing ChatGPT, six program modules were designed and developed based on experiential learning theory. The experts' evaluations confirmed that the program was suitable for case-based learning, highly usable, and applicable to nursing education. Conclusion: Generative artificial intelligence was identified as a valuable tool for enhancing the effectiveness of case-based learning. This study provides insights and future directions for integrating generative artificial intelligence into nursing education. Further research should be attempted to implement and evaluate this program with nursing students.

Fault diagnosis of nuclear power plant sliding bearing-rotor systems using deep convolutional generative adversarial networks

  • Qi Li;Weiwei Zhang;Feiyu Chen;Guobing Huang;Xiaojing Wang;Weimin Yuan;Xin Xiong
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.2958-2973
    • /
    • 2024
  • Sliding bearings are crucial rotating mechanical components in nuclear power plants, and their failures can result in severe economic losses and human casualties. Deep learning provides a new approach to bearing fault diagnosis, but there is currently a lack of a universal fault diagnosis model for studying bearing-rotor systems under various operating conditions, speeds and faults. Research on bearing-rotor systems supported by sliding bearings is limited, leading to insufficient fault data. To address these issues, this paper proposes a fault diagnosis model framework for bearing-rotor systems based on a deep convolutional generative adversarial network (TF-DLGAN). This model not only exhibits outstanding fault diagnosis performance but also addresses the issue of insufficient fault data. An experimental platform is constructed to conduct fault experiments under various operating conditions, speeds and faults, establishing a dataset for sliding bearing-rotor system faults. Finally, the model's effectiveness is validated using this dataset.

정칙화 항에 기반한 WGAN의 립쉬츠 연속 안정화 기법 제안 (Technique Proposal to Stabilize Lipschitz Continuity of WGAN Based on Regularization Terms)

  • 한희일
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.239-246
    • /
    • 2020
  • 최근에 제안된 WGAN(Wasserstein generative adversarial network)의 등장으로 GAN(generative adversarial network)의 고질적인 문제인 까다롭고 불안정한 학습과정이 다소 개선되기는 하였으나 여전히 수렴이 안되거나 자연스럽지 못한 출력물을 생성하는 등의 경우가 발생한다. 이러한 문제를 해결하기 위하여 본 논문에서는 분별기가 실제 데이터 확률분포를 보다 정확히 추정할 수 있도록 표본화 과정을 개선하는 동시에 분별기 함수의 립쉬츠 연속조건을 안정적으로 유지시키기 위한 알고리즘을 제안한다. 다양한 실험을 통하여 제안 기법의 특성을 분석하고 성능을 확인한다.

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

Generative Adversarial Networks를 이용한 Face Morphing 기법 연구 (Face Morphing Using Generative Adversarial Networks)

  • 한윤;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.435-443
    • /
    • 2018
  • 최근 컴퓨팅 파워의 폭발적인 발전으로 컴퓨팅의 한계 라는 장벽이 사라지면서 딥러닝 이라는 이름 하에 순환 신경망(RNN), 합성곱 신경망(CNN) 등 다양한 모델들이 제안되어 컴퓨터 비젼(Computer Vision)의 수많은 난제들을 풀어나가고 있다. 2014년 발표된 대립쌍 모델(Generative Adversarial Network)은 비지도 학습에서도 컴퓨터 비젼의 문제들을 충분히 풀어나갈 수 있음을 보였고, 학습된 생성기를 활용하여 생성의 영역까지도 연구가 가능하게 하였다. GAN은 여러 가지 모델들과 결합하여 다양한 형태로 발전되고 있다. 기계학습에는 데이터 수집의 어려움이 있다. 너무 방대하면 노이즈를 제거를 통한 효과적인 데이터셋의 정제가 어렵고, 너무 작으면 작은 차이도 큰 노이즈가 되어 학습이 쉽지 않다. 본 논문에서는 GAN 모델에 영상 프레임 내의 얼굴 영역 추출을 위한 deep CNN 모델을 전처리 필터로 적용하여 두 사람의 제한된 수집데이터로 안정적으로 학습하여 다양한 표정의 합성 이미지를 만들어 낼 수 있는 방법을 제시하였다.

발생학습 전략의 적용이 계절변화 관련 지구과학개념 변화에 미친 효과 (The Effects on Earth Science Concepts about Seasonal Changes by Generative Learning Strategy)

  • 정진우;윤상화;이항로
    • 한국지구과학회지
    • /
    • 제24권3호
    • /
    • pp.160-171
    • /
    • 2003
  • 본 연구에서는 계절 변화에 관련된 개념 유형을 분석하고, 관련 개념들에 관한 토의에 의해 인지갈등을 해소하는 방법을 강조한 발생학습 전략의 적용 효과를 알아보고자 하였다. 계절변화 관련 지구과학 개념 유형은 100가지 였으며, 그 중에서 66가지는 오개념을 포함한 비과학적 개념 유형이었다. 계절변화에 관련된 개념 평가도구는 R&D과정과 2번의 현장검증을 거쳐 개발되었다. 실험집단에는 지구과학개념 유형과 인지갈등을 반영한 4단계의 발생학습 전략을 적용하였다. 한편 통제집단에는 전통적인 교수 학습 전략을 적용하였다. 유의수준 .05에서 공변량분석을 실시한 결과 두 집단 간에는 유의미한 차이가 있는 것으로 나타났다. 이러한 연구 결과는 계절변화와 관련된 오개념을 지구과학적 개념으로 변화시키는 데 발생학습전략이 하나의 가능한 대안이 될 수 있음을 의미하는 것으로 볼 수 있다.

ChatGPT, 생성형 AI 시대 도서관의 데이터 리터러시 교육에 대한 연구 (A Study on the Data Literacy Education in the Library of the Chat GPT, Generative AI Era)

  • 이정미
    • 한국문헌정보학회지
    • /
    • 제57권3호
    • /
    • pp.303-323
    • /
    • 2023
  • 본 연구의 목적은 ChatGPT와 같은 생성형 AI 시대를 맞아 이와 같은 언어모델에 대해 소개하고, 이를 활용한 도서관의 데이터 리터러시 교육 구성요소를 고민하고 방향을 제시하고자 하는 연구이다. 이를 위해 다음과 같은 세 가지 연구 문제를 제시하였다. 먼저 ChatGPT 유사 언어모델의 기술적 특징을 살펴보고, 이후 생성형 인공지능 기술 기반 서비스 플랫폼을 활용하여 적합한, 정확한 정보를 유용하게 활용하기 위한 이용자의 데이터 리터러시 역량 교육의 필요성을 주창하였다. 마지막으로 ChatGPT 시대 도서관 데이터 리터러시 교육을 위해 데이터에 대한 이해, 데이터 생성, 데이터 수집, 데이터 검증, 데이터 관리, 데이터 이용 및 공유, 데이터 윤리와 같은 7개 구성항목을 포함한 데이터 리터러시 교육 구성안을 제안하였다. 결론적으로 ChatGPT와 같은 생성형 인공지능 기술이 이용자의 정보 활용에 많은 영향을 미치게 될 것이라 예상되는 만큼 도서관은 이러한 기술의 장단점, 문제점 등에 대해 한발 먼저 고민하고 이를 통해 도서관의 정보서비스를 한층 개선할 수 있는 토대로 삼아야 할 것을 강조하며 마무리했다.

Analysis of Key Factors in Corporate Adoption of Generative Artificial Intelligence Based on the UTAUT2 Model

  • Yongfeng Hu;Haojie Jiang;Chi Gong
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.53-71
    • /
    • 2024
  • 생성형 인공지능은 그 광범위한 응용 범위와 깊은 영향력으로 인해 사회의 주목을 받고 있습니다. 본 논문은 통합 기술 수용 및 사용 이론 2(UTAUT2)를 기반으로 개인의 혁신성과 인지된 위험 등의 변수를 결합하여, 기업이 생성형 인공지능을 채택하는 데 영향을 미치는 주요 요인을 연구하기 위해 종합적인 이론 모델을 구축하였습니다. 우리는 가설 경로를 검증하기 위해 구조 방정식 모델(SEM)을 사용하였고, 부트스트래핑 방법을 통해 수용 의향의 매개 효과를 검증하였으며, 계층적 회귀 분석을 통해 인지된 위험의 조절 효과를 탐구하였습니다. 연구 결과, 성과 기대, 노력 기대, 사회적 영향, 가치 평가 및 개인 혁신성이 수용 의향에 긍정적인 영향을 미치며, 수용 의향은 이러한 요인들과 사용 행동 사이에서 중요한 매개 역할을 한다는 것이 밝혀졌습니다. 반면, 인지된 위험은 수용 의향과 사용 행동 사이에서 부정적인 조절 효과를 가지는 것으로 나타났습니다. 본 연구는 기업이 생성형 인공지능을 효과적으로 채택하는 방법에 대해 이론적 근거와 실증적 지원을 제공하며, 중요한 실무적 의의를 가집니다.