The purpose of this study was to examine which of the variables were associated with generative fathering. The subject of the study is consist of 229 fathers who have 4∼6 years old in chonju. The data was gathered through questionnaires. The statistical analysis for this study were frequency. T-test. correlation. Anallysis of Variance(ANOVA), Multiple Regression. Cronbach's Alpha was used to test the reliability of the scales. The major results were as follows : First, there were no significant child's sex and birth in generative fathering. Second. there were significant father's job, income of home and type of family but there were no significant paternal education, father's age and where or not the mother works outside the home in generative fathering. Third. generative fathering was positively correlated with paternal childhood experience. paternal marital satisfaction and father's job satisfaction. Fourth, generative fathering was negatively correlated with parenting stress. Fifth, there were significant differences according to sex-role identity of father in generative fathering that is, generative fathering had more participation and responsibility when father had androgynous or feminine identity than when they had masculine or undifferentiated. Sixth, in multiple regression analysis, generative fathering was predicted significantly by paternal childhood experience, father's sex-role identity. paternal job satisfaction and parenting stress.
International Journal of Advanced Culture Technology
/
v.11
no.4
/
pp.378-384
/
2023
In this study, we explore social awareness, interest, and acceptance of generative AI, including chatGPT, which has revolutionized web search, 30 years after web search was released. For this purpose, we performed a machine learning-based topic modeling analysis based on Korean news big data collected from November 30, 2022, when chatGPT was released, to August 31, 2023. As a result of our research, we have identified seven topics related to chatGPT and generative AI; (1)growth of the high-performance hardware market, (2)service contents using generative AI, (3)technology development competition, (4)human resource development, (5)instructions for use, (6)revitalizing the domestic ecosystem, (7)expectations and concerns. We also explored monthly frequency changes in topics to explore social interest related to chatGPT and Generative AI. Based on our exploration results, we discussed the high social interest and issues regarding generative AI. We expect that the results of this study can be used as a precursor to research that analyzes and predicts the diffusion of innovation in generative AI.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.2
/
pp.301-321
/
2024
Generative artificial intelligence is currently developing rapidly and expanding industrially. The development of generative AI is expected to improve productivity in most industries. However, there is a probability for exploitation of generative AI, and cases that actually lead to crime are emerging. Compared to the fast-growing AI, there is no legislation to regulate the generative AI. In the case of Korea, the crimes and risks related to generative AI has not been clearly classified for legislation. In addition, research on the responsibility for illegal data learned by generative AI or the illegality of the generated data is insufficient in existing research. Therefore, this study attempted to classify crimes related to generative AI for domestic legislation into generative AI for target crimes, generative AI for tool crimes, and other crimes based on ECRM. Furthermore, it suggests technical countermeasures against crime and risk and measures to improve the legal system. This study is significant in that it provides realistic methods by presenting technical countermeasures based on the development stage of AI.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.3
/
pp.53-68
/
2024
Generative AI is receiving a lot of attention around the world, and ways to effectively utilize it in the business environment are being explored. In particular, since the public release of the ChatGPT service, which applies the GPT-3.5 model, a large language model developed by OpenAI, it has attracted more attention and has had a significant impact on the entire industry. This study focuses on the emergence of Generative AI, especially ChatGPT, which applies OpenAI's GPT-3.5 model, to investigate its impact on the startup industry and compare the changes that occurred before and after its emergence. This study aims to shed light on the actual application and impact of generative AI in the business environment by examining in detail how generative AI is being used in the startup industry and analyzing the impact of ChatGPT's emergence on the industry. To this end, we collected company information of generative AI-related startups that appeared before and after the ChatGPT announcement and analyzed changes in industry, business content, and investment information. Through keyword analysis, topic modeling, and network analysis, we identified trends in the startup industry and how the introduction of generative AI has revolutionized the startup industry. As a result of the study, we found that the number of startups related to Generative AI has increased since the emergence of ChatGPT, and in particular, the total and average amount of funding for Generative AI-related startups has increased significantly. We also found that various industries are attempting to apply Generative AI technology, and the development of services and products such as enterprise applications and SaaS using Generative AI has been actively promoted, influencing the emergence of new business models. The findings of this study confirm the impact of Generative AI on the startup industry and contribute to our understanding of how the emergence of this innovative new technology can change the business ecosystem.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.12
/
pp.4625-4647
/
2020
The Generative Adversarial Networks, as one of the most creative deep learning models in recent years, has achieved great success in computer vision and natural language processing. It uses the game theory to generate the best sample in generator and discriminator. Recently, many deep learning models have been applied to the security field. Along with the idea of "generative" and "adversarial", researchers are trying to apply Generative Adversarial Networks to the security field. This paper presents the development of Generative Adversarial Networks. We review traditional generation models and typical Generative Adversarial Networks models, analyze the application of their models in natural language processing and computer vision. To emphasize that Generative Adversarial Networks models are feasible to be used in security, we separately review the contributions that their defenses in information security, cyber security and artificial intelligence security. Finally, drawing on the reviewed literature, we provide a broader outlook of this research direction.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.347-348
/
2018
본 논문에서는 야간 도로 영상을 보정하여 주간 영상으로 변환하는 알고리즘을 제안한다. 영상 변환 딥러닝 알고리즘인 Generative Adversarial Network(GAN)를 기반으로 주야간 도로 영상을 학습시켜 주야간 상호 변환이 가능한 시스템을 구현한다. 우선, 입력 영상에 대해 변환된 영상을 출력하는 generative network 를 정의한다. 또한, 변환된 영상을 다시 본래 영상으로 변환하는 inverse network 를 정의한다. Generative network 와 inverse network 를 모두 통과한 결과 영상과 본래 영상의 차 영상을 통해 손실 함수를 정의함으로써 파라미터를 목적에 맞게 학습시킬 수 있다. 또한, generative network 를 통과한 결과 영상과 목적하는 영상을 구분하는 discrimination network 를 정의하여 discrimination network 와 generative network 의 minimax two- player game 을 통해 변환된 영상이 실제 목적 영상과 유사하도록 유도한다. 제안하는 알고리즘을 적용하여 야간 도로 영상의 보정을 수행하면 주변 물체 인식이 어려운 야간 영상을 물체 인식이 용이한 주간 영상으로 변환 할 수 있다.
International journal of advanced smart convergence
/
v.12
no.3
/
pp.186-191
/
2023
This study would investigate the generative AIs currently in service in the era of hyperscale AIs and explore measures for the use of generative AIs, focusing on 'ChatGPT,' which has received attention as a leader of generative AIs. Among the various generative AIs, this study selected ChatGPT, which has rich application cases to conduct research, investigation, and use. This study investigated the concept, learning principle, and features of ChatGPT, identified the algorithm of conversational AI as one of the specific cases and checked how it is used. In addition, by comparing various cases of the application of conversational AIs such as Google's Bard and MS's NewBing, this study sought efficient ways to utilize them through the collected cases and conducted research on the limitations of conversational AI and precautions for its use. If connected to city-related databases, it can provide information on city infrastructure, transportation systems, and public services, so residents can easily get the information they need. We want to apply this research to enrich the lives of our citizens.
AI 분야는 기존 분석적(Analytical) AI에서 점차 자가학습을 통한 새로운 디지털 이미지, 영상, 음성, 텍스트, 코드 등을 만드는 Generative AI로 너무 빠르게 진화하고 Generative AI 영역을 두고 세계 각 기업들이 비즈니스의 우위를 선점하기 위해 개발 속도에 열을 올리고 있다. 이미 Generative AI는 다양한 부분에서 활용되고 있는데 음악, 문학, 미디어 등 새로운 창작물을 생성할 뿐만 아니라 향후 지식경제의 생산성을 획기적으로 향상시킬 것이다. 이런 Generative AI가 AI 휴먼 서비스 발전에 어떠한 영향을 미치는지에 대해 논하고자 한다.
Communications for Statistical Applications and Methods
/
v.30
no.6
/
pp.589-603
/
2023
Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.