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Let’s imagine two artists engaged in a creative duel - 
one tirelessly crafting masterpieces, the other scrutinizing 
every brushstroke for the slightest hint of forgery. This 
encapsulates the essence of Generative Adversarial Networks 
(GANs), a powerful class of artificial intelligence (AI) 
algorithms revolutionizing the field of medical imaging. 

What are GANs?

GANs are a class of machine learning algorithms 
introduced by Goodfellow et al. in 2014 [1]. At the core, 
GANs are designed to pit two neural networks opposite 
to the other in a high stakes game of one-upmanship, 
to engage in an adversarial and dynamic process. First is 
a generator which strives to create evermore convincing 
“fakes” or “forgeries.” Second is the discriminator which 
acts as a discerning critic, tasked with distinguishing the 
authentic from the artificial. This adversarial approach 
propels both networks to constantly improve: the generator 
by mimicking reality with ever-increasing precision, and the 
discriminator by detecting even the subtlest imperfections 
[2-4]. Figure 1 provides a flowchart to explain the iterative 
process of training GANs. Figure 2 discusses the workflow 
process in GANs. This schematic diagram illustrates the 
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iterative process in which the generator and discriminator 
networks engage to generate increasingly realistic data 
samples.

Examples of Uses of GANs in Radiology

GANs have several applications in radiology. One major 
challenge in medical imaging is the scarcity of large datasets 
for training AI algorithms. GANs can be advantageous 
in overcoming this challenge by generating synthetic 
medical images, mimicking real patient data with diverse 
representations of pathologies. This data augmentation 
significantly expands the training pool, leading to more 
robust and accurate AI models for disease detection. GANs 
not only create new data but can also enhance existing 
images by reducing noise and artifacts, improving visual 
clarity and diagnostic accuracy. Additionally, GANs can 
standardize images across different CT protocols and 
vendors, ensuring uniformity in data representation and 
improving the reliability of medical imaging data. This is 
particularly crucial for quantifying regional disease patterns 
in conditions like interstitial lung disease [5,6]. 

The versatility of GANs extends beyond single modality 
enhancement. GANs can also seamlessly transform images 
from one modality to another. For instance, converting 
chest radiographs to CT-style images facilitates the 
detection of pulmonary nodules, demonstrating the 
transformative impact of GANs on cross-modal medical 
image analysis. Beyond clinical applications, GANs can also 
be used for medical education [7,8]. By generating realistic 
anatomical structures and pathology scenarios, GANs create 
AI-driven educational cases and patient models. These 
virtual simulations serve as valuable tools for training 
healthcare professionals, allowing them to interact with 
diverse clinical cases and hone their diagnostic skills.
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Several concrete examples for the utilization of GANs in 
radiology are:

Data Augmentation for AI Training
GANs can assist in the generation of synthetic images 

which may contain a diverse representation of the target 
disease mimicking real patient data beyond traditional 
data augmentation by geometric transformations (such 
as rotation, flipping, or zooming of existing images) and 
adjusting parameters (such as brightness, color, contrast, 
or introducing controlled levels of noise). For instance, 
early detection is pivotal for improving lung cancer survival 
rates. Thus, the integration of AI in lung cancer screening 
a promising avenue. However, acquiring large datasets 
of screening CT scans containing lung cancer nodules for 
training AI algorithms can be challenging. In this context, 
GANs involve a generator for meticulously creating synthetic 
CT images to simulate the complexity of authentic cancer 
nodules, whereas a discriminator evaluates and refines the 
synthetic data realism [9]. 

Anomaly Detection through Normal Image Generation
Consider a scenario in which a radiologist is examining a 

chest X-ray for signs of pneumonia. If the X-ray indicates 
abnormalities such as early signs of pneumonia, the 
radiologist employs a GAN trained on diverse datasets 
of normal chest X-rays. The GAN generator network then 
synthesizes a normal version of the input X-ray. The 
discriminator critically evaluates the generated image based 

on its knowledge database of normal X-rays, refines the 
process iteratively until the generated version convincingly 
aligns with the characteristics of a typical healthy chest 
X-ray. The radiologist then gains a precise reference point to 
identify and analyze the subtle abnormalities present in the 
original X-ray. GANs are promising in substantially improving 
anomaly detection, offering a more nuanced and accurate 
interpretation of abnormalities in medical imaging [10,11]. 

GAN-Based Bone Suppression
In chest radiography, the challenge of detecting pulmonary 

nodules is often impeded by overlapping bones and by 
inherent limitations in standard imaging techniques. To 
address this, Bae et al. [12] conducted a study comparing the 
efficacy of two distinct approaches: bone subtraction imaging 
using a dual-energy technique (BSt-DE) and bone suppression 
imaging using deep learning (BSp-DL) based on a GAN. The 
study aimed to evaluate the impact of these techniques on 
radiologists’ performance in pulmonary nodule detection. 
The study utilized CT scans as a reference and subjected 
chest X-ray (CXR) images to different reading sessions. 
The results demonstrated that both BSt-DE and BSp-DL 
outperformed the standard CXR in nodule-wise performance. 
Further, BSp-DL demonstrated improved detection of nodules 
overlapping with bones or located in the upper/middle 
lung zone over standard CXR. The study emphasizes the 
valuable contribution of GAN-based approaches in improving 
diagnostic capabilities in chest radiology.

Accelerated MR Reconstruction
MRI scans can be time-consuming, especially when high-

resolution images are required. It can increase motion 
artefacts or discomfort of patients. Consider a scenario 
where a patient undergoes a high-resolution MRI scan to 
assess intricate brain structures. GANs which are trained 
on a diverse dataset of fully sampled high-resolution MRI 
images can be utilized here. When the under-sampled MRI 
data from a new patient is uploaded on a GAN, it generates 
a synthetic, high-resolution image through its trained 
generator network. The discriminator network then evaluates 
this image against fully-sampled ground truth data, ensuring 
that the reconstructed image aligns with the characteristics 
of a true high-resolution MRI. Radiologists can analyze these 
accelerated MRI reconstructions, benefiting from both the 
speed of acquisition and the preservation of image quality. 
This not only enhances patient comfort during imaging 
procedures but also opens new possibilities for dynamic and 

Fig. 1. Generative Adversarial Network flowchart.
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real-time imaging [13,14]. 

Noise Reduction in MR Imaging
A novel approach for image denoising involves the 

utilization of a residual encoder–decoder Wasserstein GAN. 
This method is designed to explore structural similarities 
between neighboring slices by adopting a 3D configuration 
as the fundamental processing unit. For example, for a 
patient undergoing a prostate MRI scan for the detection 
and characterization of potential abnormalities (such as 

prostate cancer), the 3D MRI scans are often affected by 
noise, which can impede the identification of small lesions or 
the delineation of prostate anatomy [15]. The GAN, in such a 
case, incorporates residual auto-encoders and deconvolution 
operations within its generator network, ensuring effective 
noise reduction while preserving the nuanced structural 
intricacies of the prostate. By applying a 3D Wasserstein 
GAN for denoising, radiologists gain access to clearer and 
more accurate images, enhancing their ability to identify 
subtle abnormalities such as early-stage tumors [16]. 

Fig. 2. GAN training workflow. GAN = Generative Adversarial Network, G = generator, D = discriminator
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Computed Tomography Kernel Conversion
The choice of reconstruction kernel significantly 

impacts the diagnostic quality and visual representation of 
anatomical structures on CT. This problem was addressed by 
Choi et al. [17] by utilizing GANs. This approach transforms 
CT images reconstructed with one kernel into images with 
different reconstruction kernels. For example, in a scenario 
where a hospital upgrades its CT scanner, necessitating 
the conversion of historical images captured with an older 
sharp kernel to align with the characteristics of a newer, 
smoother kernel. The GAN is enlisted to perform this multi-
domain image-to-image translation, with a distinctive 
emphasis on modifying the discriminator architecture. In 
this specific application, the discriminator is trained not 
only to differentiate between real and generated images but 
also to discern variations stemming from different CT kernel 
domains. This GAN-based approach streamlines the process 
of CT kernel conversion, offering a practical solution for 
healthcare institutions seeking to upgrade imaging systems 
while preserving the integrity and comparability of their 
historical medical data. The GAN-based CT kernel conversion 
also serves as a valuable tool in the realm of AI research, 
addressing challenges related to technical heterogeneity and 
fostering advancements in medical image analysis [18]. 

Radiation Dose Reduction
GANs offer a promising solution in reducing radiation 

dose while maintaining imaging quality. Instead of directly 
using standard-dose scans, which carry higher radiation 
risks, GANs can generate realistic, high-resolution images 
from significantly lower-dose scans. The generator takes a 
noisy, low-dose image as input and attempts to complete 
it, mimicking the detail and clarity of a standard-dose 
scan. Meanwhile, the discriminator acts as a critical judge, 
constantly refining the generator’s output to ensure 
the final image satisfactorily creates a realistic image. 
Thereby radiologists can rely on quick, low-dose scans, 
minimizing radiation exposure for patients. The technique 
can be beneficial for patients of all ages, ensuring that 
the advantages of reduced radiation exposure are extended 
universally [19]. 

Medical Education
GANs have proven to be invaluable tools in generating 

realistic anatomical structures and pathology scenarios, 
serving as a foundation for AI-driven educational cases and 
patient models. 

Clinical Cases
Using GANs, intricate details and complexities of medical 

scenarios are replicated, providing learners with a dynamic 
and diverse training environment. For instance, a GAN can 
generate realistic medical images showcasing different stages 
of disease progression, allowing healthcare professionals to 
refine their diagnostic skills in a risk-free virtual setting [20]. 

Patient Models
In the context of patient care, the development of 

AI-generated patient models represents a significant 
advancement. These patient models generated using GANs, 
serve as valuable tools for predictive modelling, treatment 
planning, and simulating various clinical scenarios. For 
instance, a GAN can create patient models based on different 
age groups, comorbidities, and medical histories, offering a 
comprehensive training ground for healthcare practitioners 
to refine their decision-making skills and tailor treatments 
to specific patient profiles [21,22]. 

Challenges in GAN Utilization

GANs, like any AI model, can inherit biases present in the 
training data. This can lead to discriminatory or incorrect 
image generation if the training data itself is skewed. 
Mitigating data bias requires careful data selection and 
curation practices. Robust and satisfactorily representative 
data needs to be used for training to ensure that feature 
analysis is done with adequate level of detail. Generating 
realistic synthetic data raises concerns about potential 
misuse. GANs could be misused to create fake medical 
images for insurance fraud or spread misinformation. Robust 
security measures and ethical guidelines are essential to 
address these vulnerabilities. Moreover, GANs remain a “black 
box,” making it difficult to understand how the output is 
achieved. At this stage, it is more accurate to say that GANs 
can work as supportive measures for radiologists on a case-
by-case basis rather than as reliable tools [23].

Additionally, GANs are associated with several unique 
hurdles which need to be carefully considered. One is a 
phenomenon known as “mode collapse,” which is an inherent 
problem in GANs where the generator fails to produce diverse 
outputs and instead converges to a limited set of patterns. 
This limitation can impede the model ability to capture the 
full variability from the training data [24]. For example, for 
generation of synthetic CT images from MRIs, mode collapse 
could manifest as an overemphasis on a specific tissue type, 
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neglecting the diversity present in the training dataset. 
Additionally, for generating chest X-rays, mode collapse 
may result in the generation of images which predominantly 
feature healthy lungs, thus, overlooking the pathological 
variations. Unlike traditional generative models, GANs lack 
straightforward metrics for assessing the output quality. 
This complexity makes it challenging to gauge the fidelity 
and diversity of the generated medical images objectively. 
To overcome this, alternative evaluation methods, such 
as the Turing test or visual scoring by domain experts like 
radiologists become essential. 
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