• Title/Summary/Keyword: Generation scheduling

Search Result 262, Processing Time 0.031 seconds

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

A Real-Time Scheduling System Architecture in Next Generation Wafer Production System (차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처)

  • Lee, Hyun;Hur, Sun;Park, You-Jin;Lee, Gun-Woo;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.

An Expert System for Short-Term Generation Scheduling of Electric Power Systems (전력계통의 단기 발전계획 기원용 전문가시스템)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.831-840
    • /
    • 1992
  • This paper presents an efficient short-term generation scheduling method using a rule-based expert/consulting system approach to assist electric energy system operators and planners. The expert system approach is applied to improve the Dynamic Programming(DP) based generation scheduling algorithm. In the selection procedure of the feasible combinations of generating units at each stage, automatic consulting on the manipulation of several constraints such as the minimum up time, the minimum down time and the maximum running time constraints of generating units will be performed by the expert/consulting system. In order to maximize the solution feasibility, the aforementioned constraints are controlled by a rule-based expert system, that is, instead of imposing penalty cost to those constraint violated combinations, which sometimes may become the very reason of no existing solution, several constraints will be manipulated within their flexibilities using the rules and facts that are established by domain experts. In this paper, for the purpose of implementing the consulting of several constraints during the dynamic process of generation scheduling, an expert system named STGSCS is developed. As a building tool of the expert system, C Language Integrated Production System(CLIPS) is used. The effectiveness of the proposed algorithm has been demonstrated by applying it to a model electric energy system.

  • PDF

Scheduling of Combined Cycle Gas Turbine Using Lagrangian Relaxation Method (Lagrangian Relaxation 법을 이용한 복합 화력 발전기의 기동 정지 계획)

  • Nam, Young-Woo;Park, Jong-Keun;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.334-336
    • /
    • 2000
  • In Korea, the CCGTs have been installed to about 25% of the total generating capacity. Generally CCGTs determine the System Marginal Prices(SMP) in Cost Based Generation Pool. So the scheduling of CCGTs is very important in daily generation scheduling. This paper describes the scheduling of CCGTs which considers the operating characteristics of them. We use lagrangian relaxation method which decomposes the unit committment problem into the subproblems of the individual unit. In the CCGT subproblem, we define the cost function of CCGT in two way. In Case study, the daily generation scheduling is performed using the data of Korean thermal system.

  • PDF

An Integer Programming Approach to the Subway Daily Crew Scheduling Problem (지하철 일간승무계획문제의 정수계획해법)

  • 변종익;이경식;박성수;강성열
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.67-86
    • /
    • 2002
  • This paper considers subway crew scheduling problem. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper. we propose two basic techniques that solve the subway crew scheduling problem in a reasonable time, though the optimality of the solution is not guaranteed. We develop an algorithm that solves the column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational result for a real instance is reported.

An Integer Programming Approach to the Problem of Daily Crew Scheduling (일간승무계획문제의 정수계획해법)

  • 변종익;이경식;박성수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.613-616
    • /
    • 2000
  • This paper considers the problem of subway crew scheduling. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper, we propose two basic techniques that solve the problem in a reasonable time, though the optimality of the solution is not guaranteed. To reduce the number of variables, we adopt column-generation technique. We could develop an algorithm that solves column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational results show column-generation makes the problem of treatable size, and variable fixing enables us to solve LP relaxation in shorter time without a considerable increase in the optimal value. Finally, we were able to obtain an integer optimal solution of a real instance within a reasonable time.

  • PDF

A Study on the Constrained Dispatch Scheduling Using Linear Programming for TWBP (선형계획법을 이용한 양방향입찰시장에서의 제약급전계획 연구)

  • Kim Gwang Won;Lee Jong-Bae;Jung Jung-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.573-580
    • /
    • 2004
  • A new real-time constrained dispatch scheduling (CDS) is needed for TWBP. The CDS needs to be performed at every dispatch period to decide generation power of scheduling generators and amounts of scheduling load. Therefore, the CDS is not based on real generation costs but on bidding data of market participants with some constraints such as power balance, generation limits, ancillary service, and transmission line limits. This paper selects linear programming(LP) as an optimization tool for the CDS and presents effective formulae for the LP application. This paper also presents the way of minimizing the number of variables and constraints of the LP to improve real-time applicability.

An Optimal Algorithm for Aircraft Scheduling Problem by Column Generation (열(列) 생성(生成) 기법(技法)에 의한 항공기(航空機) 운항계획(運航計劃) 문제(問題)의 최적해법(最適解法))

  • Ki, Jae-Seug;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.13-22
    • /
    • 1993
  • The aircraft scheduling, which is used to determine flight frequency, departure times and aircraft type assignments, is main problem of airline's planning. This paper proposes a new algorithm for aircraft scheduling that is to maximize airline profits. This paper proposes a column generation algorithm to get an optimal solution of the continous relaxation not using all the feasible variables, but using only a limited number of variables that is generated whenever it is necessary. Using this algorithm, proposes an optimal algorithm to get an optimal integer solution of aircraft scheduling problem efficiently. The effectiveness of the column generation algorithm and the optimal algorithm is illustrated by the computational results obtained from a series of real airline problems.

  • PDF

A Development of Decision Support System for Nurse Scheduling (일 대학병원 간호직원 근무 스케쥴링 전산화 개발 사례)

  • 최용선;이은숙;박정호
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.1
    • /
    • pp.80-87
    • /
    • 1995
  • The critical problem of nurse scheduling in the hospital is determining the day-to -day shift assignments for each nurse for the specified period in a way that satisfies the given requirements of the hospital. As nurse scheduling involves many factors and requirements, manual scheduling requires much time and effort to produce an adequate schedule. A PC - based decision support system, developed in Turbo - C/sup ++/, for nurse scheduling was introduced. The system is composed of 4 sub-systems : 1) Entering basic information for each nursing unit : 2) Generation of an appropriate initial schedule and revised schedule for a given period, maximally satisfying each nurse's duty requests : 3) Provision of variety of statistical information, and 4) Help messages for each modular function. Icons and a mouse are used for easier graphic user interface and reducing the need for typing efforts. This system can help nurses develop quick and easy schedule generation and allow more time for the patient care.

  • PDF

Profit-based Thermal Unit Maintenance Scheduling under Price Volatility by Reactive Tabu Search

  • Sugimoto Junjiro;Yokoyama Ryuichi
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper, an improved maintenance scheduling approach suitable for the competitive environment is proposed by taking account of profits and costs of generation companies and the formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In competitive power markets, electricity prices are determined by the balance between demand and supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is essential for system operation planners and market participants to take the volatility of electricity price into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial optimization problem with a novel objective function by which the most profitable maintenance schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling is applied to a practical test power system to verify the advantages and practicability of the proposed method.