• Title/Summary/Keyword: Generation Prediction

Search Result 803, Processing Time 0.024 seconds

The Development and Application of the Quasi-dynamic Wetness Index and the Dynamic Wetness Index (유사 동력학적 습윤지수와 동력학적 습윤지수의 개발과 적용)

  • Han, Ji-Young;Kim, Sang-Hyun;Kim, Nam-Won;Kim, Hyun-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.961-969
    • /
    • 2003
  • Formulation of quasi-dynamic wetness index was derived to predict the spatial and temporal distribution of the soil moisture. The algorithm of dynamic wetness index was developed through introducing the convolution integral with the rainfall input. The spatial and temporal behaviors of the wetness index of the Sulmachun Watershed was calculated using the digital elevation model(DEM) and the rainfall data for two years. The spatial distribution of the dynamic wetness index shows most dispersive feature of flow generation among the three assumptions of steady, quasi-dynamic and dynamic. The statistical distribution of the quasi-dynamic wetness index and the dynamic wetness index approximate to the steady state wetness index as the time step is increased. The dynamic wetness index shows mixed distribution of the normalized probability density function.

A Study on the Combined Decision Tree(C4.5) and Neural Network Algorithm for Classification of Mobile Telecommunication Customer (이동통신고객 분류를 위한 의사결정나무(C4.5)와 신경망 결합 알고리즘에 관한 연구)

  • 이극노;이홍철
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.139-155
    • /
    • 2003
  • This paper presents the new methodology of analyzing and classifying patterns of customers in mobile telecommunication market to enhance the performance of predicting the credit information based on the decision tree and neural network. With the application of variance selection process from decision tree, the systemic process of defining input vector's value and the rule generation were developed. In point of customer management, this research analyzes current customers and produces the patterns of them so that the company can maintain good customer relationship and makes special management on the customer who has huh potential of getting out of contract in advance. The real implementation of proposed method shows that the predicted accuracy is higher than existing methods such as decision tree(CART, C4.5), regression, neural network and combined model(CART and NN).

  • PDF

Implementation of Wireless Network Design Tool for TD-SCDMA (TD-SCDMA 무선망 설계 Tool 의 구현 방법론)

  • Jeon, Hyun-Cheol;Ryu, Jae-Hyun;Park, Sang-Jin;Kim, Jung-Chul;Ihm, Jong-Tae
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.247-250
    • /
    • 2007
  • There are three main kinds of service standards for 3G(Third-Generation) wireless communication as WCDMA, CDMA2000 and TD-SCDMA(Time Division-Synchronous Code Division Multiple Access). Compare with WCDMA and CDMA2000, TD-SCDMA system has distinguished technical characters. It is a TDD(Time Division Duplexing) based technology and deploys several advanced but in some respects complex technologies such as smart antenna, joint-detection and baton-handoff, etc. Therefore to analyze and design TD-SCDMA wireless network, it needs more efficient and systematic simulation tool. General simulation tool has so many analysis functions including path loss prediction, capacity and coverage analysis. For more suitable for TD-SCDMA, new additional technologies have to be implemented in simulation tool. Especially as the wireless network highly advancing focused on data service, it more needs to research and develop on the reliability of the simulation tool. In this paper, to give the concrete process and skill about how to implement TD-SCDMA simulation tool, we define the kinds of simulation tool and list basic analysis functions available for TD-SCDMA network design at first. And then we explain how to consider the effects of new technologies of TD-SCDMA and give the solutions about theses considerations.

  • PDF

Investigation of Structural Reliability on Solder Joint According to Heater Set-point of the Lunar Lander (달 착륙선의 히터 작동온도 설정에 따른 솔더 접합부의 구조적 신뢰성 분석)

  • Jeon, Young-Hyeon;Park, Tae-Yong;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • The heater is applied to the lunar lander for securing its survivability under severe lunar thermal environment during 14 days of night time. For this, the heater on/off set-points shall be determined to minimize the power consumption due to the limited power generation of lunar lander during night time. In addition, the temperature changes of the lander according to the heater set-point is also an important factor because it is related to thermo-mechanical reliability on solder joint of on-board electronics. In this study, we investigated thermo-mechanical reliability on solder joint according to the heater set-point by using commercial reliability and a life prediction tool of Sherlock based on the thermal analysis results of lunar lander that is a year of the mission lifetime.

Prediction of Radionuclide Inventory for Low- and Intermediate-Level Radioactive Waste by Considering Concentration Limit of Waste Package (처분방사능량제한치를 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 산정(안))

  • Jung, Kang Il;Kim, Min Seong;Jeong, Noh Gyeom;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.65-82
    • /
    • 2017
  • The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.

Mission Control System for KOMPSAT-2 Operations (다목적 실용위성2호 관제시스템 운용)

  • Jeong, Won-Chan;Lee, Byeong-Seon;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The Mission Control System for KOMPSAT-2 was developed by ETRI and is being operated at Satellite Control Center at KARI to monitor and control KOMPSAT-2 (KOrea Multi-Purpose Satellite) which was launched in July 28th, 2006. MCE provides the functions such as telemetry reception and processing, telecommand generation and transmission, satellite tracking and ranging, orbit prediction and determination, attitude maneuver planning, satellite simulation, etc. KOMPSAT-2 is the successor of KOMPSAT-1 which is an earth-observation satellite. KOMPSAT-2 has higher resolution image taking ability due to MSC (Multi Spectral Camera) payload in the satellite and precise orbit and attitude determination by Mission Control System. It can produce one meter resolution image compared to six meter resolution image by KOMPSAT-1.

  • PDF

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

Discussion on the Practical Use of CFD for Furnaces;A Case of Grate Type Waste Incinerators (연소로 열유동 해석 방식과 결과 분석에 대한 고찰;화격자식 소각로의 사례)

  • Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.85-94
    • /
    • 2002
  • Computational flow dynamics(CFD) has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Though it needs many simplifications and complicated flow models, the reasonability of its results is not fully evaluated. For example, the inlet condition is calculated from an arbitrarily assumed properties of combustion gas release from the waste bed, since the combustion in the bed is difficult to be predicted. In this study, the computational modeling and calculation procedures of CFD for the grate type waste incinerator were evaluated using comparative simulations. Though the assumption method on the generation of the combustion gas directly affected the temperature and gas species concentrations, the overall flow pattern was dominated by the secondary air jets. The gaseous reaction could be included by assuming the release of the products of incomplete combusion from the bed. However, the reaction effficiency cannot not be directly evaluated from the species concentration, since it is not possible to simulate the actual co-existence of fuel rich or oxygen rich puffs over the bed. In predicting the turbulence, the higher order model, such as Reynolds stress model, gave difference shape of local recirculation zones, but similar results was acquired from the standard $k-{\varepsilon}$ model. Introducing radiation model was required for accurate temperature prediction, but it also caused heat imbalance due to the fixed temperature of the inlet, i.e. the waste bed. Thus, the computational modeling procedures on incinerators and the analysis of the predicted results should be progressed carefully. Though not validated experimentally, current simulation method is capable of comparative evaluation on the flow-related parameters such as the furnace shape and secondary air injection using identical inlet conditions. Quantitative analysis using measures of the residence time and mixing is essential to compare the flow performance efficiently.

  • PDF

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

Analysis of Flood due to Storm Surge at Masan Bay (마산만에서 고조로 인한 침수원인 분석)

  • 황호동;이중우;권소현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.217-224
    • /
    • 2004
  • Open-coast storm surge computations are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. A simple quasi-two dimensional numerical model for storm surge is considered. In order to understand the model's underlying assumptions, range of validity, and application, we discussed several aspects of typhoons and the physical factors governing storm generation processes. We also followed the basic governing equation, together with the assumption generally taken in their development, to see the principle characteristics of the model from a physical as well as a mathematical point of view. The equations consistent with the model described here are reduced forms of the basic equations and their effects on the resulting numerical scheme are discussed. Finally we applied the model discussed above to a storm surge problem at Masan Bay, the south coast of Korea Effects of astronomical tide, initial water level, and atmospheric pressure setup are considered. We then analyzed the flood at the coastal city and proposed a reasonable way of flood control.

  • PDF