• Title/Summary/Keyword: Generation Mix

Search Result 134, Processing Time 0.032 seconds

A Study on the Construction of the Flexible Long-Term Generation Mix under Uncertainties of Power System (전력계통(電力系統)의 불확실성(不確實性)을 포함한 유연(柔軟)한 장기전원구성(長期電源構成)의 수립에 관한 연구(硏究))

  • Song, Kil-Yeong;NamGung, Jae-Young;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.159-162
    • /
    • 1993
  • A new approach using fuzzy dynamic programming is proposed for the flexible long-term generation mix under uncertain circumstances. A characteristic feature of the presented approach is that not only fuzziness in fuel and construction cost. load growth and reliability but also many constraints of generation mix can easily be taken into account by using fuzzy dynamic programming. The method can accommodate arbitrary shape of membership function as well as the operation of pump-generator. And so more realistic solution can be obtained. The effectiveness of the proposed approach is demonstrated by the best generation mix problem of KEPCO-system which contains nuclear, coal, LNG, oil and pump-generator hydro plant in multi-years.

  • PDF

A Study of Optimal Fuel-Mix Considering Power Generation Operation (발전기 출력특성을 고려한 최적전원구성 연구)

  • Jung, Young-Beom;Kim, Kil-Sin;Park, Chang-Ho;Yoon, Yong-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.28-37
    • /
    • 2011
  • Though Korea has introduced CBP(Cost Based pool) power trading system since 2001, long-term Generation system planning has been executed by government for Cost minimization every 2 years. Until currently the model which is used for Generation system planning and best-mix only considers cost minimization and total yearly or quarterly electricity demand every year. In a view point of one day power supply operation, technical characteristics, like the ramp up/down rate of total generation system, minimum up/down time and GFRQ(Governor Free Response Quantity), are very important. this paper analyzes Optimal Fuel-Mix for 2022 Korea generation system satisfying these constraints of each fuel type and considering pump storage plants, construction cost and $CO_2$ emission charge Using MILP(Mixed Integer Linear Programming) method. Also the sensitivity analysis which follows in future power industry environmental change accomplished.

A Study of Economic Efficiency and Environmental Performance Due to the Conversion of the 7th and 8th Basic Plan for Long-term Power Supply and Demand (제7차 및 제8차 전력수급기본계획 전원 구성 전환에 따른 경제성 및 환경성 변화 분석 연구)

  • Cho, Sungjin;Yoon, Teayeon;Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.201-229
    • /
    • 2019
  • This paper estimates the effects of generation mix changes in the $7^{th}$ and $8^{th}$ Basic Plan for Long-term Power Supply and Demand from two aspects: economic efficiency through electricity prices and environmental performance through $CO_2$ and air pollutants(NOx, SOx, PM) emissions. Particularly, we examined additional generation mix conversion paths that take into account the trade-off between economic efficiency and environmental performance through scenario analysis. According to our results, the conversion from the $7^{th}$ plan to the $8^{th}$ plan should increase the electricity prices in the mid- and long-term, while reducing GHG and air pollutants emissions at the same time. The alternative generation mix that combines $7^{th}$ and $8^{th}$ plans shows that there exists a path to mitigate the trade-off between economic and environmental in the long-term. It will be next to impossible to derive a optimal generation mix that simultaneously considers the core values, such as supply stability, environmental performance, economic efficiency, energy safety and energy security, when establishing the power supply and demand plan. However, by exploring the effects of various generation mix paths and suggesting near-optimal paths, people can best choose their direction after weighhing all the paths when deciding on a forward-looking generation mix in the long term.

Wind Power Generation: Its Impact on Peak Time and Future Power Mix (퐁력전원이 피크타임과 발전설비구성에 미치는 영향분석: 제3차 신재생에너지 기술개발 및 이용.보급 기본계획 기준)

  • Lee, Jin-Ho;Kim, Su-Duk
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.867-876
    • /
    • 2009
  • Although renewable power is regarded a way to active response to climate change, the stability of whole power system could be a serious problem in the future due to its uncertainties such as indispatchableness and intermittency. From this perspective, the peak time impact of stochastic wind power generation is estimated using simulation method up to year 2030 based on the 3rd master plan for the promotion of new and renewable energy on peak time. Result shows that the highest probability of wind power impact on peak time power supply could be up to 4.41% in 2030. The impact of wind power generation on overall power mix is also analyzed up to 2030 using SCM model. The impact seems smaller than expectation, however, the estimated investment cost to make up such lack of power generation in terms of LNG power generation facilities is shown to be a significant burden to existing power companies.

Estimations of Reasonable Load Factor Based on the Conventional Generation Mix Concept (전원구성 통념에 입각한 전력시스템 적정 부하율 산정에 관한 연구)

  • Hwang, Sung-Wook;Kim, Jung-Hoon;Jung, Young-Beom;Yoon, Yong-Beum
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.23-25
    • /
    • 2007
  • In this paper an estimation method is proposed to find reasonable load factor of the power system based on the conventional generation mix concept. To find the factor investment costs and operation costs are considered in the estimation. To use feasible results both supply side and demand side of views should be considered. But as a first step of this study only the generation mix is considered in this study.

  • PDF

Utility scale solar power development in Nepal

  • Adhikari, Rashmi
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.86-91
    • /
    • 2020
  • Nepal is among the richest in terms of water resource availability and it is one of the most important natural resources of the country. Currently, 72% of the population is electrified through the national grid system. The power generation mix into the grid is hydro dominated with minor shares generated from solar and thermal (accounts for less than 1%). To achieve sustainable development in the power sector it is essential to diversify power generation mix into the grid. Knowing the facts, the government has a plan to achieve a 5-10% share of power generation from solar and mix it into the grid system. Solar is the second most abundant, prominent and free source of renewable in the context of Nepal. This study mainly focuses on the grid-connected solar system, its importance, present status, government efforts, and its need. It is based on the review of literature, news published in national newspaper online news and international organization's report.

A Study on the Construction of flexible Best Generation Mix with fuzzy Multi-criterion Function (퍼지 다목적함수(多目的函數)를 갖는 유연(柔軟)한 최적전원구성(最適電源構成)의 수립에 관한 연구(硏究))

  • Song, Kil-Yeong;NamGung, Jae-Young;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.103-105
    • /
    • 1992
  • The new approach using fuzzy linear programming with fuzzy multi-criterion is proposed for the best generation mix of a power system. A chracteristic feature of the presented approach is that not only cost but also reliability for goal function can be taken into account by using fuzzy multi-criterion and so more realistic solution can be obtained. The effectiveness of the proposed approach is demonstrated by the best generation mix problem of KEPCO-system size model which contains nuclear, coal, LNG, oil and pump-generator hydro plant in multi-years.

  • PDF

The Evaluation of Long-Term Generation Portfolio Considering Uncertainty (불확실성을 고려한 장기 전원 포트폴리오의 평가)

  • Chung, Jae-Woo;Min, Dai-Ki
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.3
    • /
    • pp.135-150
    • /
    • 2012
  • This paper presents a portfolio model for a long-term power generation mix problem. The proposed portfolio model evaluates generation mix by considering the tradeoffs between the expected cost for power generation and its variability. Unlike conventional portfolio models measuring variance, we introduce Conditional Value-at-Risk (CVaR) in designing the variability with aims to considering events that are enormously expensive but are rare such as nuclear power plant accidents. Further, we consider uncertainties associated with future electricity demand, fuel prices and their correlations, and capital costs for power plant investments. To obtain an objective generation by each energy source, we employ the sample average approximation method that approximates the stochastic objective function by taking the average of large sample values so that provides asymptotic convergence of optimal solutions. In addition, the method includes Monte Carlo simulation techniques in generating random samples from multivariate distributions. Applications of the proposed model and method are demonstrated through a case study of an electricity industry with nuclear, coal, oil (OCGT), and LNG (CCGT) in South Korea.

A Study of the Long-term Fuel Mix with the Introduction of Renewable Portfolio Standard (RPS(Renewable Portflio Standard) 제도 도입에 따른 국내 장기 전원구성 변화에 관한 연구)

  • Lee, Jeong-In;Han, Seok-Man;Kim, Bal-Ho H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.467-477
    • /
    • 2009
  • Renewable Portfolio Standard (RPS) is a regulatory policy that requires the generation companies to increase the proportion of renewable energy sources such as wind, solar, LFG, fuel cell, and small hydro. Recently, Korean government decided to increase the portion of renewable energy to 3% to total electricity generation by 2012 from the current level of 0.13%. To achieve this goal, an innovative plan for market competitiveness would be required in addition to the present Feed-In-Tariff (FIT). That is Korean government has taken it into consideration to introduce a Renewable Portfolio Standard (RPS) as an alternative to FIT. This paper reviews the impact of RPS on the long-term fuel mix in 2020. The studies have been carried out with the GATE-PRO (Generation And Transmission Expansion PROgram) program, a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. Detailed studies on long-term fuel mix in Korea have been carried out with four RPS scenarios of 3%, 5%, 10% and 20%. The important findings and comments on the results are given to provide an insight on future regulatory policies.

A Study on the trend of Energy Mix and Air Environmental Impact Assessment (비전통가스 개발 확대에 따른 국내외 에너지믹스 동향 및 대기환경영향에 관한 연구)

  • Cho, Hanna;Joo, Hyun Soo;Park, Joo-Yang
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.639-648
    • /
    • 2013
  • Unconventional natural gas resources are now estimated to be as large as conventional resources. Unconventional natural gas has became an increasingly important source of energy in the world since the start of this century. The factors that drive natural gas demand and supply point more and more to a future in which natural gas plays greater role in the global energy mix. The expansion of using natural gas will be expected in Korea. This research aims to analyze environmental impacts of expansion of unconventional natural gas. This research was carried out for comparative analysis between global energy mix and Korea energy mix, and developed a case that reflect the changed energy mix due to the expansion of unconventional natural gas in Korea. Also this research evaluate the production of air pollutants and the cost of the damage in power generation sector. The results of this research can be summarized as that natural gas portion of future global energy mix (about 25%) is greater than Korea energy mix (about 12%). This research developed a case that replace 10% energy of power generation sector to natural gas in the 6th demand supply program, reflecting the changed energy mix due to the expansion of natural gas use. In that case, air pollutants would be reduced gradually through 2015 to 2027. In detail, carbon dioxide reduces 22 million tons and environmental damage cost reduces 4500 billion won by 2027.